Lateral diffusion of erythrocyte phospholipids in model membranes comparison between inner and outer leaflet components

Autor: Philippe F. Devaux, Cribier S, Neumann Jm, G Morrot
Rok vydání: 1990
Předmět:
Zdroj: European Biophysics Journal. 18
ISSN: 1432-1017
0175-7571
DOI: 10.1007/bf00185418
Popis: The physical properties of lipid bilayers with a similar composition to the outer and inner leaflets of the human erythrocyte membrane have been examined in protein-free model systems. The outer leaflet (OL) was represented by a phospholipid mixture containing phosphatidylcholine and sphingomyelin extracted from human erythrocytes, while a mixture of phosphatidylcholine, phosphatidylserine and phosphatidylethanolamine represented the inner leaflet (IL). The ratio of cholesterol to phospholipid was varied in both mixtures. The lateral diffusion coefficient of fluorescent phospholipids diluted in such lipid mixtures was determined by the modulated fringe pattern photobleaching technique. Contrast curves with a single exponential decay, indicative of homogeneous samples, were obtained only for temperatures above 15 degrees C and for a cholesterol to phospholipid molar ratio below 0.8. The rate of lateral diffusion was approximately five times faster in IL than in OL multilayers, in agreement with former results obtained in human erythrocytes (Morrot et al. 1986). Varying the cholesterol to phospholipid ratio from 0 to 0.8 (mol/mol) enabled us to decrease the diffusion constant by only a factor of approximately 2 for both IL and OL mixtures. The order parameter of a spin-labeled phospholipid was determined in the different systems and found to be systematically smaller in IL mixtures than in OL mixtures. The present study indicates that the difference in lipid diffusivity of the two erythrocyte leaflets may be accounted for solely by a difference in phospholipid composition, and may be independent of cholesterol and protein asymmetry.
Databáze: OpenAIRE