On bounds for steady waves with negative vorticity
Autor: | Evgeniy Lokharu |
---|---|
Rok vydání: | 2021 |
Předmět: |
Physics
Applied Mathematics Mathematical analysis Mathematical Analysis Absolute value (algebra) Function (mathematics) Vorticity Condensed Matter Physics Critical value 01 natural sciences Upper and lower bounds 010305 fluids & plasmas Physics::Fluid Dynamics Computational Mathematics symbols.namesake Bernoulli's principle Matematisk analys 0103 physical sciences Froude number symbols 010306 general physics Constant (mathematics) Mathematical Physics |
Zdroj: | Journal of Mathematical Fluid Mechanics. 23 |
ISSN: | 1422-6952 1422-6928 |
Popis: | We prove that no two-dimensional Stokes and solitary waves exist when the vorticity function is negative and the Bernoulli constant is greater than a certain critical value given explicitly. In particular, we obtain an upper bound$$F \le \sqrt{2} + \epsilon $$F≤2+ϵfor the Froude number of solitary waves with a negative constant vorticity, sufficiently large in absolute value. |
Databáze: | OpenAIRE |
Externí odkaz: |