Micrometre-long covalent organic fibres by photoinitiated chain-growth radical polymerization on an alkali-halide surface
Autor: | Michel Féron, Franck Para, Franck Bocquet, Frédéric Chérioux, Christian Loppacher, Matthew Watkins, Laurent Nony, David Z. Gao, Filippo Federici Canova |
---|---|
Přispěvatelé: | Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Nanolayers Research Computing LTD (Nanolayers Research Computing LTD), University of Lincoln, Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
General Chemical Engineering
Radical polymerization Halide F162 Polymer Chemistry 02 engineering and technology 010402 general chemistry 01 natural sciences F321 Solid state Physics Nanomaterials F342 Quantum Mechanics [SPI.MAT]Engineering Sciences [physics]/Materials chemistry.chemical_compound Dewetting F200 Materials Science [SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics chemistry.chemical_classification [SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] [PHYS.PHYS.PHYS-ATM-PH]Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus] General Chemistry Polymer 021001 nanoscience & nanotechnology 0104 chemical sciences Monomer Polymerization Chemical engineering chemistry Covalent bond F100 Chemistry F320 Chemical Physics 0210 nano-technology |
Zdroj: | Nature Chemistry Nature Chemistry, Nature Publishing Group, 2018, 10, pp.1112-1117. ⟨10.1038/s41557-018-0120-x⟩ Nature Chemistry, Nature Publishing Group, 2018, 10, pp.6 Nature Chemistry, 2018, 10, pp.1112-1117. ⟨10.1038/s41557-018-0120-x⟩ |
ISSN: | 1755-4330 |
DOI: | 10.1038/s41557-018-0120-x⟩ |
Popis: | On-surface polymerization is a promising technique to prepare organic functional nanomaterials that are challenging to synthesize in solution, but it is typically used on metal substrates, which play a catalytic role. Previous examples on insulating surfaces have involved intermediate self-assembled structures, which face high barriers to diffusion, or annealing to higher temperatures, which generally causes rapid dewetting and desorption of the monomers. Here we report the photoinitiated radical polymerization, initiated from a two-dimensional gas phase, of a dimaleimide monomer on an insulating KCl surface. Polymer fibres up to 1 μm long are formed through chain-like rather than step-like growth. Interactions between potassium cations and the dimaleimide’s oxygen atoms facilitate the propagation of the polymer fibres along a preferred axis of the substrate over long distances. Density functional theory calculations, non-contact atomic force microscopy imaging and manipulations at room temperature were used to explore the initiation and propagation processes, as well as the structure and stability of the resulting one-dimensional polymer fibres. On-surface polymerization is a promising technique to prepare organic functional nanomaterials, but it has remained difficult to carry out on insulating surfaces. Now, the photoinitiated radical polymerization of dimaleimide on KCl, initiated from a two-dimensional gas phase and guided by molecule–substrate interactions, has led to polymer fibres up to 1 μm long. |
Databáze: | OpenAIRE |
Externí odkaz: |