Mechanisms of water supply and vegetation demand govern the seasonality and magnitude of evapotranspiration in Amazonia and Cerrado
Autor: | Hans Verbeeck, David W. Galbraith, Gonzalo Miguez-Macho, Humberto Ribeiro da Rocha, Ben Poulter, Zong-Liang Yang, Ian Baker, Scott R. Saleska, Mingjie Shi, Lindsey E. Gulden, Bart Kruijt, Natalia Restrepo-Coupe, Xubin Zeng, Bart van den Hurk, Naomi M. Levine, Bradley O. Christoffersen, Kazuhito Ichii, Phillippe Ciais, Luis Gustavo Gonçalves de Gonçalves, A. K. Sahoo, Xiaodan Guan, Bruno Paraluppi Cestaro, Joshua B. Fisher, Atul K. Jain, Alessandro Araújo, Jordan Borak, Michel Nobre Muza, Koichi Sakaguchi, Hewlley Maria Acioli Imbuzeiro, Débora Regina Roberti, Kevin Schaefer, M. Altaf Arain, Antonio O. Manzi, Celso von Randow, Marcos Heil Costa |
---|---|
Přispěvatelé: | University of Arizona, McMaster University [Hamilton, Ontario], Colorado State University [Fort Collins] (CSU), Universidade Federal de São Paulo, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), ICOS-ATC (ICOS-ATC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), University of Oxford [Oxford], University of Edinburgh, Royal Netherlands Meteorological Institute (KNMI), Chiba University, Department of Atmospheric Sciences [Urbana], University of Illinois at Urbana-Champaign [Urbana], University of Illinois System-University of Illinois System, University of Southern California (USC), Montana State University (MSU), Pacific Northwest National Laboratory (PNNL), University of California [Los Angeles] (UCLA), University of California, Alterra [Wageningen] (ESS-CC), Centre for Water and Climate [Wageningen], Universidade de São Paulo (USP), Instituto Nacional de Pesquisas Espaciais (INPE), Ministério da Ciência, Tecnologia e Inovação, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), University of Oxford, University of California (UC), Universidade de São Paulo = University of São Paulo (USP) |
Rok vydání: | 2014 |
Předmět: |
Biosphere model
Atmospheric Science Stomatal conductance 010504 meteorology & atmospheric sciences environment simulator jules 0207 environmental engineering Eddy covariance 02 engineering and technology climate model 01 natural sciences Earth System Science Hydrology (agriculture) Evapotranspiration Dry season Meteorology & Atmospheric Sciences Water-use efficiency 020701 environmental engineering [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment ComputingMilieux_MISCELLANEOUS AMAZÔNIA 0105 earth and related environmental sciences Hydrology [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere Global and Planetary Change regional evapotranspiration biosphere model Forestry boundary-layer Vegetation 15. Life on land land-surface scheme Climate Resilience atmosphere interactions 13. Climate action Klimaatbestendigheid stomatal conductance model description carbon-cycle feedbacks Environmental science Leerstoelgroep Aardsysteemkunde Agronomy and Crop Science |
Zdroj: | Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual) Universidade de São Paulo (USP) instacron:USP Agricultural and Forest Meteorology 191 (2014) Agricultural and Forest Meteorology Agricultural and Forest Meteorology, 2014, 191, pp.33-50. ⟨10.1016/j.agrformet.2014.02.008⟩ Agricultural and Forest Meteorology, 191, 33-50 |
ISSN: | 0168-1923 |
DOI: | 10.1016/j.agrformet.2014.02.008⟩ |
Popis: | Evapotranspiration (E) in the Amazon connects forest function and regional climate via its role in precipitation recycling However, the mechanisms regulating water supply to vegetation and its demand for water remain poorly understood, especially during periods of seasonal water deficits In this study, we address two main questions: First, how do mechanisms of water supply (indicated by rooting depth and groundwater) and vegetation water demand (indicated by stomatal conductance and intrinsic water use efficiency) control evapotranspiration (E) along broad gradients of climate and vegetation from equatorial Amazonia to Cerrado, and second, how do these inferred mechanisms of supply and demand compare to those employed by a suite of ecosystem models? We used a network of eddy covariance towers in Brazil coupled with ancillary measurements to address these questions With respect to the magnitude and seasonality of E, models have much improved in equatorial tropical forests by eliminating most dry season water limitation, diverge in performance in transitional forests where seasonal water deficits are greater, and mostly capture the observed seasonal depressions in E at Cerrado However, many models depended universally on either deep roots or groundwater to mitigate dry season water deficits, the relative importance of which we found does not vary as a simple function of climate or vegetation In addition, canopy stomatal conductance (gs) regulates dry season vegetation demand for water at all except the wettest sites even as the seasonal cycle of E follows that of net radiation In contrast, some models simulated no seasonality in gs, even while matching the observed seasonal cycle of E. We suggest that canopy dynamics mediated by leaf phenology may play a significant role in such seasonality, a process poorly represented in models Model bias in gs and E, in turn, was related to biases arising from the simulated light response (gross primary productivity, GPP) or the intrinsic water use efficiency of photosynthesis (iWUE). We identified deficiencies in models which would not otherwise be apparent based on a simple comparison of simulated and observed rates of E. While some deficiencies can be remedied by parameter tuning, in most models they highlight the need for continued process development of belowground hydrology and in particular, the biological processes of root dynamics and leaf phenology, which via their controls on E, mediate vegetation-climate feedbacks in the tropics. © 2014 Elsevier B.V. |
Databáze: | OpenAIRE |
Externí odkaz: |