Inequalities for inert primes and their applications
Autor: | Zilong He |
---|---|
Rok vydání: | 2020 |
Předmět: |
Sequence
Algebra and Number Theory Mathematics - Number Theory Mathematics::Number Theory Astrophysics::Instrumentation and Methods for Astrophysics Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing) Type (model theory) Combinatorics symbols.namesake Integer FOS: Mathematics symbols Computer Science::General Literature Kronecker symbol Number Theory (math.NT) Mathematics |
Zdroj: | International Journal of Number Theory. 16:1819-1832 |
ISSN: | 1793-7310 1793-0421 |
DOI: | 10.1142/s1793042120500943 |
Popis: | For any given non-square integer $ D\equiv 0,1 \pmod{4} $, we prove Euclid's type inequalities for the sequence $ \{q_{i}\} $ of all primes satisfying the Kronecker symbol $ (D/q_{i})=-1 $, $ i=1,2,\cdots, $ and give a new criterion on a ternary quadratic form to be irregular as an application, which simplifies Dickson and Jones's argument in the classification of regular ternary quadratic forms to some extent. International Journal of Number Theory. arXiv admin note: text overlap with arXiv:1905.01423 |
Databáze: | OpenAIRE |
Externí odkaz: |