Inequalities for inert primes and their applications

Autor: Zilong He
Rok vydání: 2020
Předmět:
Zdroj: International Journal of Number Theory. 16:1819-1832
ISSN: 1793-7310
1793-0421
DOI: 10.1142/s1793042120500943
Popis: For any given non-square integer $ D\equiv 0,1 \pmod{4} $, we prove Euclid's type inequalities for the sequence $ \{q_{i}\} $ of all primes satisfying the Kronecker symbol $ (D/q_{i})=-1 $, $ i=1,2,\cdots, $ and give a new criterion on a ternary quadratic form to be irregular as an application, which simplifies Dickson and Jones's argument in the classification of regular ternary quadratic forms to some extent.
International Journal of Number Theory. arXiv admin note: text overlap with arXiv:1905.01423
Databáze: OpenAIRE