New Derived from Anosov Diffeomorphisms with Pathological Center Foliation

Autor: F. Micena
Rok vydání: 2016
Předmět:
Zdroj: Journal of Dynamics and Differential Equations. 29:1159-1172
ISSN: 1572-9222
1040-7294
DOI: 10.1007/s10884-016-9523-9
Popis: In this paper we focused our study on derived from Anosov diffeomorphisms (DA diffeomorphisms ) of the torus \(\mathbb {T}^3,\) it is, an absolute partially hyperbolic diffeomorphism on \(\mathbb {T}^3\) homotopic to a linear Anosov automorphism of the \(\mathbb {T}^3.\) We can prove that if \(f: \mathbb {T}^3 \rightarrow \mathbb {T}^3 \) is a volume preserving DA diffeomorphism homotopic to a linear Anosov A, such that the center Lyapunov exponent satisfies \(\lambda ^c_f(x) > \lambda ^c_A > 0,\) with x belongs to a positive volume set, then the center foliation of f is non absolutely continuous. We construct a new open class U of non Anosov and volume preserving DA diffeomorphisms, satisfying the property \(\lambda ^c_f(x) > \lambda ^c_A > 0\) for \(m-\)almost everywhere \(x \in \mathbb {T}^3.\) Particularly for every \(f \in U,\) the center foliation of f is non absolutely continuous.
Databáze: OpenAIRE