Bounds for the global cyclicity index of a general network via weighted majorization
Autor: | Anna Torriero, Monica Bianchi, José Luis Palacios, Alessandra Cornaro |
---|---|
Přispěvatelé: | Bianchi, M, Cornaro, A, Palacios, J, Torriero, A |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Discrete mathematics
graphs Index (economics) p-majorization Settore MAT/09 - RICERCA OPERATIVA Generalization Applied Mathematics graph cyclicity index Upper and lower bounds law.invention Settore MAT/05 - ANALISI MATEMATICA Combinatorics p-Schur-convex functions law Electrical network Discrete Mathematics and Combinatorics weighted global weighted global cyclicity index Majorization Analysis Mathematics p-Schur-convex function |
Popis: | In this paper we define a new graph-theoretic cyclicity index CW(G) as a natural generalization of the global cyclicity index C(G) when arbitrary resistances are allocated to each edge of an electrical network. Upper and lower bounds for CW(G) are then provided using a powerful technique, based on p-majorization, which extends our prior studies (Bianchi et al. in Discrete Appl. Math., 2014, doi: 10.1016/j.dam.2014.10.037; Bianchi et al. in Math. Inequal. Appl. 16(2): 329-347, 2013). These new results on weighted majorization are of interest in themselves and may be applied also in other scenarios. |
Databáze: | OpenAIRE |
Externí odkaz: |