Anionic phospholipid gradients: an uncharacterized frontier of the plant endomembrane network

Autor: Yvon Jaillais, Gwennogan A Dubois
Přispěvatelé: Reproduction et développement des plantes (RDP), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), STAYING-TIGHTANR-18-CE13-0016-02, ANR-18-CE13-0025,caLIPSO,Mécanismes du pattern lipidique du réseau trans-Golgien (trans-Golgi Network) et rôles dans le tri des protéines, la polarité cellulaire et le développement des plantes(2018), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Rok vydání: 2020
Předmět:
Zdroj: Plant Physiology
Plant Physiology, American Society of Plant Biologists, In press, ⟨10.1093/plphys/kiaa056⟩
Plant Physiology, In press, ⟨10.1093/plphys/kiaa056⟩
Plant Physiol
ISSN: 1532-2548
0032-0889
DOI: 10.1093/plphys/kiaa056
Popis: Anionic phospholipids include phosphatidic acid (PA), phosphatidylserine (PS), phosphatidylinositol (PI), and its phosphorylated derivatives the phosphoinositides (e.g. phosphatidylinositol-4-phosphate [PI4P] and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]). Although anionic phospholipids are low-abundant lipids, they are particularly important for membrane functions. In particular, anionic lipids act as biochemical and biophysical landmarks that contribute to the establishment of membrane identity, signaling activities, and compartment morphodynamics. Each anionic lipid accumulates in different endomembranes according to a unique subcellular pattern, where they locally provide docking platforms for proteins. As such, they are mostly believed to act in the compartments in which they accumulate. However, mounting evidence throughout eukaryotes suggests that anionic lipids are not as compartment-specific as initially thought and that they are instead organized as concentration gradients across different organelles. In this update, we review the evidence for the existence of anionic lipid gradients in plants. We then discuss the possible implication of these gradients in lipid dynamics and homeostasis, and also in coordinating subcellular activities. Finally, we introduce the notion that anionic lipid gradients at the cellular scale may translate into gradients at the tissue level, which could have implications for plant development.
Databáze: OpenAIRE