PyART: Python API Recommendation in Real-Time

Autor: Xiangyu Zhang, Rui Hao, Lei Xu, Baowen Xu, Xincheng He, Yang Feng
Rok vydání: 2021
Předmět:
Zdroj: ICSE (Companion Volume)
Popis: API recommendation in real-time is challenging for dynamic languages like Python. Many existing API recommendation techniques are highly effective, but they mainly support static languages. A few Python IDEs provide API recommendation functionalities based on type inference and training on a large corpus of Python libraries and third-party libraries. As such, they may fail to recommend or make poor recommendations when type information is missing or target APIs are project-specific. In this paper, we propose a novel approach, PyART, to recommend APIs for Python programs in real-time. It features a light-weight analysis to derives so-called optimistic data-flow, which is neither sound nor complete, but simulates the local data-flow information humans can derive. It extracts three kinds of features: data-flow, token similarity, and token co-occurrence, in the context of the program point where a recommendation is solicited. A predictive model is trained on these features using the Random Forest algorithm. Evaluation on 8 popular Python projects demonstrates that PyART can provide effective API recommendations. When historic commits can be leveraged, which is the target scenario of a state-of-the-art tool ARIREC, our average top-1 accuracy is over 50% and average top-10 accuracy over 70%, outperforming APIREC and Intellicode (i.e., the recommendation component in Visual Studio) by 28.48%-39.05% for top-1 accuracy and 24.41%-30.49% for top-10 accuracy. In other applications such as when historic comments are not available and cross-project recommendation, PyART also shows better overall performance. The time to make a recommendation is less than a second on average, satisfying the real-time requirement.
Comment: 12 pages
Databáze: OpenAIRE