Uniform convergence of conditional distributions for absorbed one-dimensional diffusions

Autor: Denis Villemonais, Nicolas Champagnat
Přispěvatelé: TO Simulate and CAlibrate stochastic models (TOSCA), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Advances in Applied Probability
Advances in Applied Probability, Applied Probability Trust, 2018, 50 (1), pp.178-203. ⟨10.1017/apr.2018.9⟩
Advances in Applied Probability, 2018, 50 (1), pp.178-203. ⟨10.1017/apr.2018.9⟩
ISSN: 0001-8678
DOI: 10.1017/apr.2018.9⟩
Popis: This article studies the quasi-stationary behaviour of absorbed one-dimensional diffusions. We obtain necessary and sufficient conditions for the exponential convergence to a unique quasi-stationary distribution in total variation, uniformly with respect to the initial distribution. An important tool is provided by one dimensional strict local martingale diffusions coming down from infinity. We prove under mild assumptions that their expectation at any positive time is uniformly bounded with respect to the initial position. We provide several examples and extensions, including the sticky Brownian motion and some one-dimensional processes with jumps.
35 pages
Databáze: OpenAIRE