Machine learning-based prediction models for formation energies of interstitial atoms in HCP crystals

Autor: Dongwoo Lee, Won-Yong Shin, Sooran Kim, Keonwook Kang, Daegun You, Shraddha Ganorkar
Rok vydání: 2020
Předmět:
Zdroj: Scripta Materialia. 183:1-5
ISSN: 1359-6462
DOI: 10.1016/j.scriptamat.2020.02.042
Popis: Prediction models of the formation energies of H, B, C, N, and O atoms in various interstitial sites of hcp-Ti, Zr, and Hf crystals are developed based on machine learning. Parametric models such as linear regression and brute force search (BFS) as well as nonparametric algorithms including the support vector regression (SVR) and the Gaussian process regression (GPR) are employed. Readily accessible chemical and geometrical descriptors allow straightforward implementation of the prediction models without any expensive computational modeling. The models based on BFS, SVR, and GPR show the excellent performance with R2 > 96%.
Databáze: OpenAIRE