Data-driven system identification of thermal systems using machine learning

Autor: Roland Tóth, Ştefan-Cristian Nechita, Koos van Berkel
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: IFAC-PapersOnLine. 54(7):162-167
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2021.08.352
Popis: The paper addresses the identification of spatial-temporal mirror surface deformations as a result of laser-based heat load within the lithography process of integrated circuit production. The thermal diffusion and surface deformation are modeled by separation of the spatial-temporal effects using data-driven orthogonal decomposition. A novel tree adjoining grammar (TAG) and sparsity enhanced symbolic-regression-based learning methods are deployed to discover temporal dynamics that connect the spatial variation. The resulting data-driven procedure is applied to automatically synthetise a compact model representation of synthetic thermal effects induced mirror surface deformations.
Databáze: OpenAIRE