Morphology Transition of ZnO from Thin Film to Nanowires on Silicon and its Correlated Enhanced Zinc Polarity Uniformity and Piezoelectric Responses
Autor: | Hervé Roussel, Carmen Jiménez, Youssouf Guerfi, Eirini Sarigiannidou, Franck Bassani, Fabrice Donatini, X. Mescot, Vincent Consonni, Bassem Salem, Quang Chieu Bui, Gustavo Ardila, Odette Chaix-Pluchery |
---|---|
Přispěvatelé: | Laboratoire des matériaux et du génie physique (LMGP ), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Institut de Microélectronique, Electromagnétisme et Photonique - Laboratoire d'Hyperfréquences et Caractérisation (IMEP-LAHC), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Laboratoire des technologies de la microélectronique (LTM ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Optique & Microscopies (NEEL - POM), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes [2020-....] (UGA [2020-....])-Université Grenoble Alpes [2020-....] (UGA [2020-....]), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes [2020-....] (UGA [2020-....])-Université Grenoble Alpes [2020-....] (UGA [2020-....])-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2020-....] (UGA [2020-....]), Laboratoire des matériaux et du génie physique [2020-....] (LMGP [2020-....]), Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2020-....] (Grenoble INP [2020-....]), Institut polytechnique de Grenoble - Grenoble Institute of Technology [2020-....] (Grenoble INP [2020-....]), Optique et microscopies (POM) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
010302 applied physics
Materials science Silicon Polarity (physics) business.industry Nanowire chemistry.chemical_element 02 engineering and technology Chemical vapor deposition [CHIM.MATE]Chemical Sciences/Material chemistry 021001 nanoscience & nanotechnology 01 natural sciences Piezoelectricity Piezoresponse force microscopy chemistry 0103 physical sciences Optoelectronics General Materials Science Texture (crystalline) Thin film [SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics 0210 nano-technology business ComputingMilieux_MISCELLANEOUS |
Zdroj: | ACS Applied Materials & Interfaces ACS Applied Materials & Interfaces, 2020, 12 (26), pp.29583-29593. ⟨10.1021/acsami.0c04112⟩ ACS Applied Materials & Interfaces, Washington, D.C. : American Chemical Society, 2020, ⟨10.1021/acsami.0c04112⟩ ACS Applied Materials & Interfaces, Washington, D.C. : American Chemical Society, 2020, 12 (26), pp.29583-29593. ⟨10.1021/acsami.0c04112⟩ |
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c04112⟩ |
Popis: | ZnO thin films and nanostructures have received increasing interest in the field of piezoelectricity over the last decade, but their formation mechanisms on silicon when using pulsed-liquid injection metal–organic chemical vapor deposition (PLI-MOCVD) are still open to a large extent. Also, the effects of their morphology, dimensions, polarity, and electrical properties on their piezoelectric properties have not been completely decoupled yet. By only tuning the growth temperature from 400 to 750 °C while fixing the other growth conditions, the morphology transition of ZnO deposits on silicon from stacked thin films to nanowires through columnar thin films is shown. A detailed analysis of their formation mechanisms is further provided. The present transition is associated with strong enhancement of their crystallinity and growth texture along the c-axis together with a massive relaxation of the strain in nanowires. It is also related to a prevailed zinc polarity, for which its uniformity is strongly improved in nanowires. The nucleation of basal-plane stacking faults of I1-type in nanowires is also revealed and related to an emission line at about 3.326 eV in cathodoluminescence spectra, further exhibiting fairly low phonon coupling. Interestingly, the transition is additionally associated with a significant improvement of the piezoelectric amplitude, as determined by piezoresponse force microscopy measurements. The Zn-polar domains exhibit a larger piezoelectric amplitude than the O-polar domains, showing the importance of controlling the polarity in these deposits as a prerequisite to enhance the performances of piezoelectric devices. The present findings demonstrate the high potential in using the PLI-MOCVD system to form ZnO with different morphologies and polarity uniformity on silicon. They further reveal unambiguously the superiority of nanowires over thin films for piezoelectric devices. |
Databáze: | OpenAIRE |
Externí odkaz: |