A Deep Learning based Framework for UAV Trajectory Pattern Recognition

Autor: Serge Chaumette, Pascal Desbarats, Xingyu Pan
Přispěvatelé: Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB), Pan, Xingyu, Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Université Sciences et Technologies - Bordeaux 1-Université Bordeaux Segalen - Bordeaux 2
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Contextual image classification
Unmanned Aerial Vehicles (UAV)
business.industry
Computer science
Deep learning
pattern recognition
ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
deep learning
[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
ComputerApplications_COMPUTERSINOTHERSYSTEMS
02 engineering and technology
010501 environmental sciences
01 natural sciences
[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV]
trajectory
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
Pattern recognition (psychology)
Trajectory pattern
0202 electrical engineering
electronic engineering
information engineering

020201 artificial intelligence & image processing
Computer vision
Artificial intelligence
business
0105 earth and related environmental sciences
Zdroj: International Conference on Image Processing Theory, Tool & Applications
International Conference on Image Processing Theory, Tool & Applications, Nov 2019, Istanbul, Turkey
IPTA
Popis: International audience; Recognizing the trajectory patterns of Unmanned Aerial Vehicles (UAV) allows to identify their missions also to detect abnormalities for intelligent supervision. To take advantage of the developments of deep learning on image classification, we proposed a method that converts 3D trajectory data into 2D images and trains a deep network adapted to sketch-like images. We achieved a promising recognition rate of 99.5% on the database of simulated UAV trajectory images.
Databáze: OpenAIRE