Distinct Roles of Interferon Alpha and Beta in Controlling Chikungunya Virus Replication and Modulating Neutrophil-Mediated Inflammation
Autor: | Raeann M. Shimak, Lindsey E. Cook, Matthew L. Hedberg, Kathleen C. F. Sheehan, Deborah J. Veis, Marissa C. Locke, Alissa R. Young, Deborah J. Lenschow, Michael S. Diamond, Kristen Monte |
---|---|
Rok vydání: | 2019 |
Předmět: |
Male
Neutrophils Interferon Regulatory Factor-7 Immunology Alpha interferon Gene Expression Inflammation Alphavirus Tarsus Animal Virus Replication Microbiology Virus Bone and Bones Pathogenesis 03 medical and health sciences Mice 0302 clinical medicine Immune system Virology medicine Animals Muscle Skeletal 030304 developmental biology Mice Knockout 0303 health sciences Innate immune system biology virus diseases Interferon-alpha Interferon-beta biology.organism_classification Antibodies Neutralizing Immunity Innate Viral replication Neutrophil Infiltration Insect Science Host-Pathogen Interactions Chikungunya Fever Pathogenesis and Immunity Female medicine.symptom Chikungunya virus 030215 immunology |
Zdroj: | J Virol |
ISSN: | 1098-5514 |
Popis: | Type I interferons (IFNs) are key mediators of the innate immune response. Although members of this family of cytokines signal through a single shared receptor, biochemical and functional variation exists in response to different IFN subtypes. While previous work has demonstrated that type I IFNs are essential to control infection by chikungunya virus (CHIKV), a globally emerging alphavirus, the contributions of individual IFN subtypes remain undefined. To address this question, we evaluated CHIKV pathogenesis in mice lacking IFN-β (IFN-β knockout [IFN-β-KO] mice or mice treated with an IFN-β-blocking antibody) or IFN-α (IFN regulatory factor 7 knockout [IRF7-KO] mice or mice treated with a pan-IFN-α-blocking antibody). Mice lacking either IFN-α or IFN-β developed severe clinical disease following infection with CHIKV, with a marked increase in foot swelling compared to wild-type mice. Virological analysis revealed that mice lacking IFN-α sustained elevated infection in the infected ankle and in distant tissues. In contrast, IFN-β-KO mice displayed minimal differences in viral burdens within the ankle or at distal sites and instead had an altered cellular immune response. Mice lacking IFN-β had increased neutrophil infiltration into musculoskeletal tissues, and depletion of neutrophils in IFN-β-KO but not IRF7-KO mice mitigated musculoskeletal disease caused by CHIKV. Our findings suggest disparate roles for the IFN subtypes during CHIKV infection, with IFN-α limiting early viral replication and dissemination and IFN-β modulating neutrophil-mediated inflammation. IMPORTANCE Type I interferons (IFNs) possess a range of biological activity and protect against a number of viruses, including alphaviruses. Despite signaling through a shared receptor, there are established biochemical and functional differences among the IFN subtypes. The significance of our research is in demonstrating that IFN-α and IFN-β both have protective roles during acute chikungunya virus (CHIKV) infection but do so by distinct mechanisms. IFN-α limits CHIKV replication and dissemination, whereas IFN-β protects from CHIKV pathogenesis by limiting inflammation mediated by neutrophils. Our findings support the premise that the IFN subtypes have distinct biological activities in the antiviral response. |
Databáze: | OpenAIRE |
Externí odkaz: |