Limit cycles for two classes of control piecewise linear differential systems
Autor: | Regilene Oliveira, Jaume Llibre, Camila Ap. B. Rodrigues |
---|---|
Rok vydání: | 2020 |
Předmět: |
Pure mathematics
General Mathematics 010102 general mathematics Discontinuous piecewise linear differential system 010103 numerical & computational mathematics Differential systems 01 natural sciences Piecewise linear function Limit cycles Matrix (mathematics) Computational Theory and Mathematics ESPAÇOS SIMÉTRICOS Periodic orbits Bifurcation Limit (mathematics) 0101 mathematics Statistics Probability and Uncertainty Eigenvalues and eigenvectors Mathematics |
Zdroj: | Recercat. Dipósit de la Recerca de Catalunya instname Dipòsit Digital de Documents de la UAB Universitat Autònoma de Barcelona Recercat: Dipósit de la Recerca de Catalunya Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya) São Paulo Journal of Mathematical Sciences Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual) Universidade de São Paulo (USP) instacron:USP |
ISSN: | 2316-9028 1982-6907 |
DOI: | 10.1007/s40863-020-00163-7 |
Popis: | We study the bifurcation of limit cycles from the periodic orbits of 2n–dimensional linear centers $${\dot{x}} = A_0 x$$ when they are perturbed inside classes of continuous and discontinuous piecewise linear differential systems of control theory of the form $${\dot{x}} = A_0 x + \varepsilon (A x + \phi (x_1) b)$$, where $$\phi $$ is a continuous or discontinuous piecewise linear function, $$A_0$$ is a $$2n\times 2n$$ matrix with only purely imaginary eigenvalues, $$\varepsilon $$ is a small parameter, A is an arbitrary $$2n\times 2n$$ matrix, and b is an arbitrary vector of $${\mathbb {R}}^n$$. |
Databáze: | OpenAIRE |
Externí odkaz: |