Asymptotically exact strain-gradient models for nonlinear slender elastic structures: a systematic derivation method
Autor: | Claire Lestringant, Basile Audoly |
---|---|
Přispěvatelé: | Institut Jean le Rond d'Alembert (DALEMBERT), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de mécanique des solides (LMS), École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Lestringant, Claire [0000-0002-6929-4655], Apollo - University of Cambridge Repository |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Length scale
Asymptotic analysis A Localization B elastic material [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] Rotational symmetry FOS: Physical sciences Applied Physics (physics.app-ph) 02 engineering and technology Bending C energy methods [SPI.MECA.SOLID]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Solid mechanics [physics.class-ph] 01 natural sciences 010305 fluids & plasmas Strain energy 0103 physical sciences Cylinder B finite strain Physics Mechanical Engineering Mathematical analysis C asymptotic analysis Physics - Applied Physics 021001 nanoscience & nanotechnology Condensed Matter Physics Nonlinear system Mechanics of Materials [SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph] Finite strain theory 0210 nano-technology physics.app-ph |
Zdroj: | Journal of the Mechanics and Physics of Solids Journal of the Mechanics and Physics of Solids, Elsevier, 2020, pp.103730. ⟨10.1016/j.jmps.2019.103730⟩ |
ISSN: | 0022-5096 |
DOI: | 10.1016/j.jmps.2019.103730⟩ |
Popis: | International audience; We propose a general method for deriving one-dimensional models for nonlinear structures. It captures the contribution to the strain energy arising not only from the macroscopic elastic strain as in classical structural models, but also from the strain gradient. As an illustration, we derive one-dimensional strain-gradient models for a hyper-elastic cylinder that necks, an axisymmetric membrane that produces bulges, and a two-dimensional block of elastic material subject to bending and stretching. The method o↵ers three key advantages. First, it is nonlinear and accounts for large deformations of the cross-section, which makes it well suited for the analysis of localization in slender structures. Second, it does not require any a priori assumption on the form of the elastic solution in the cross-section, i.e., it is Ansatz-free. Thirdly, it produces one-dimensional models that are asymptotically exact when the macroscopic strain varies on a much larger length scale than the cross-section diameter. |
Databáze: | OpenAIRE |
Externí odkaz: |