Foundations for Streaming Model Transformations by Complex Event Processing
Autor: | István Ráth, Dániel Varró, István Dávid |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Computer. Automation
Theoretical computer science Event (computing) Computer science Semantics (computer science) Special Section Paper VIATRA Complex event processing 020207 software engineering Context (language use) 02 engineering and technology Streaming model transformations Transformation (function) Gesture recognition 020204 information systems Modeling and Simulation Modelling and Simulation 0202 electrical engineering electronic engineering information engineering Reactive transformations Incremental build model Live models Change-driven transformations Software |
Zdroj: | Software and Systems Modeling Software and systems modeling |
ISSN: | 1619-1374 1619-1366 |
Popis: | Streaming model transformations represent a novel class of transformations to manipulate models whose elements are continuously produced or modified in high volume and with rapid rate of change. Executing streaming transformations requires efficient techniques to recognize activated transformation rules over a live model and a potentially infinite stream of events. In this paper, we propose foundations of streaming model transformations by innovatively integrating incremental model query, complex event processing (CEP) and reactive (event-driven) transformation techniques. Complex event processing allows to identify relevant patterns and sequences of events over an event stream. Our approach enables event streams to include model change events which are automatically and continuously populated by incremental model queries. Furthermore, a reactive rule engine carries out transformations on identified complex event patterns. We provide an integrated domain-specific language with precise semantics for capturing complex event patterns and streaming transformations together with an execution engine, all of which is now part of the Viatra reactive transformation framework. We demonstrate the feasibility of our approach with two case studies: one in an advanced model engineering workflow; and one in the context of on-the-fly gesture recognition. |
Databáze: | OpenAIRE |
Externí odkaz: |