A note on Standard Modules and Vogan L-packets

Autor: Volker Heiermann
Přispěvatelé: Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), ANR-13-BS01-0012,FERPLAY,Formule des Traces Relative, Périodes, Fonctions L et Analyse Harmonique(2013)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: manuscripta mathematica
manuscripta mathematica, Springer Verlag, 2016, 150, pp.571-583. ⟨10.1007/s00229-016-0824-4⟩
Manuscripta mathematica
Manuscripta mathematica, 2016, 150, pp.571-583. ⟨10.1007/s00229-016-0824-4⟩
ISSN: 0025-2611
1432-1785
DOI: 10.1007/s00229-016-0824-4⟩
Popis: Let $F$ be a non-Archimedean local field of characteristic $0$, let $G$ be the group of $F$-rational points of a connected reductive group defined over $F$ and let $G'$ be the group of $F$-rational points of its quasi-split inner form. Given standard modules $I(\tau ,\nu )$ and $I(\tau ',\nu ')$ for $G$ and $G'$ respectively with $\tau '$ a generic tempered representation, such that the Harish-Chandra's $\mu $-functions of a representation in the supercuspidal support of $\tau $ and of a generic essentially square-integral representation in some Jacquet module of $\tau '$ agree (after a suitable identification of the underlying spaces under which $\nu =\nu '$), we show that $I(\tau ,\nu )$ is irreducible whenever $I(\tau ',\nu ')$ is. The conditions are satisfied if the Langlands quotients $J(\tau ,\nu )$ and $J(\tau ',\nu ')$ of respectively $I(\tau ,\nu )$ and $I(\tau ',\nu ')$ lie in the same Vogan $L$-packet (whenever this Vogan $L$-packet is defined), proving that, for any Vogan $L$-packet, all the standard modules whose Langlands quotient is equal to a member of the Vogan $L$-packet are irreducible, if and only if this Vogan $L$-packet contains a generic representation. The result for generic Vogan $L$-packets of quasi-split orthogonal and symplectic groups was proven by Moeglin-Waldspurger and used in their proof of the general case of the local Gan-Gross-Prasad conjectures for these Groups.
Comment: 15 pages
Databáze: OpenAIRE