Mirror symmetry for K3 surfaces

Autor: Nathan Priddis, Paola Comparin, C. J. Bott
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Popis: For certain K3 surfaces, there are two constructions of mirror symmetry that are very different. The first, known as BHK mirror symmetry, comes from the Landau-Ginzburg model for the K3 surface; the other, known as LPK3 mirror symmetry, is based on a lattice polarization of the K3 surface in the sense of Dolgachev's definition. There is a large class of K3 surfaces for which both versions of mirror symmetry apply. In this class we consider the K3 surfaces admitting a certain purely nonsymplectic automorphism of order 4, 8, or 12, and we complete the proof that these two formulations of mirror symmetry agree for this class of K3 surfaces.
26 pages
Databáze: OpenAIRE