Phase-space-density limitation in laser cooling without spontaneous emission

Autor: Daniel Comparat, H. Lignier, Thierry Chanelière
Přispěvatelé: Nanophysique et Semiconducteurs (NPSC), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire Aimé Cotton (LAC), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Cachan (ENS Cachan)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Physical Review A
Physical Review A, American Physical Society, 2018, 98 (6), pp.063432. ⟨10.1103/PhysRevA.98.063432⟩
ISSN: 1050-2947
1094-1622
Popis: We study the possibility to enhance the phase space density of non-interacting particles submitted to a classical laser field without spontaneous emission. We clearly state that, when no spontaneous emission is present, a quantum description of the atomic motion is more reliable than semi-classical description which can lead to large errors especially if no care is taken to smooth structures smaller than the Heisenberg uncertainty principle. Whatever the definition of position - momentum phase space density, its gain is severely bounded especially when started from a thermal sample. More precisely, the maximum phase space density, can only be improved by a factor M for M-level atoms. This bound comes from a transfer between the external and internal degrees of freedom. To circumvent this limit, one can use non-coherent light fields, informational feedback cooling schemes, involve collectives states between fields and atoms, or allow a single spontaneous emission even
Comment: 3 figures, 4 pages
Databáze: OpenAIRE