A zinc–iron redox-flow battery under $100 per kW h of system capital cost
Autor: | Kelsey L. Yeager, Martin Z. Bazant, Yushan Yan, Kevin J. Kuttler, Kameron M. Conforti, Jonathan B. Grunewald, Ke Gong, Xiaoya Ma, Shuang Gu |
---|---|
Přispěvatelé: | Massachusetts Institute of Technology. Department of Chemical Engineering, Massachusetts Institute of Technology. Department of Mathematics, Bazant, Martin Z., Conforti, Kameron Michael |
Rok vydání: | 2015 |
Předmět: |
Engineering
Waste management Renewable Energy Sustainability and the Environment business.industry chemistry.chemical_element Iron redox High cell High power density Zinc Pollution Flow battery Renewable energy Nuclear Energy and Engineering chemistry Environmental Chemistry Capital cost business Process engineering Power density |
Zdroj: | Prof. Bazant via Erja Kajosalo |
ISSN: | 1754-5706 1754-5692 |
DOI: | 10.1039/c5ee02315g |
Popis: | Redox flow batteries (RFBs) are one of the most promising scalable electricity-storage systems to address the intermittency issues of renewable energy sources such as wind and solar. The prerequisite for RFBs to be economically viable and widely employed is their low cost. Here we present a new zinc–iron (Zn–Fe) RFB based on double-membrane triple-electrolyte design that is estimated to have under $100 per kW h system capital cost. Such a low cost is achieved by a combination of inexpensive redox materials (i.e., zinc and iron) and high cell performance (e.g., 676 mW cm[superscript −2] power density). Engineering of the cell structure is found to be critical to enable the high power density. Our cost model shows that a Zn–Fe RFB demonstrates the lowest cost among some notable RFBs and could reach the 2023 cost target set by the U.S. Department of Energy ($150 per kW h). United States. Dept. of Energy (ARPA-E Award DE-AR0000346) |
Databáze: | OpenAIRE |
Externí odkaz: |