Spatial redistribution of irregularly-spaced Pareto fronts for more intuitive navigation and solution selection
Autor: | Bouter, Anton, Pirpinia, Kleopatra, Alderliesten, Tanja, Bosman, Peter A. N. |
---|---|
Přispěvatelé: | Radiotherapy, Cancer Center Amsterdam, Graduate School, Centrum Wiskunde & Informatica, Amsterdam (CWI), The Netherlands |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Mathematical optimization
Uniform distribution (continuous) Simplex GOMEA Pareto principle Pareto front visualization Image registration 02 engineering and technology Multi-objective optimization 030218 nuclear medicine & medical imaging 03 medical and health sciences 0302 clinical medicine 0202 electrical engineering electronic engineering information engineering Real-valued optimization A priori and a posteriori 020201 artificial intelligence & image processing Representation (mathematics) Pareto analysis Mathematics |
Zdroj: | GECCO (Companion) GECCO '17 Companion: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 1697-1704 STARTPAGE=1697;ENDPAGE=1704;TITLE=GECCO '17 Companion: Proceedings of the Genetic and Evolutionary Computation Conference Companion |
DOI: | 10.1145/3067695.3082555 |
Popis: | A multi-objective optimization approach is often followed by an a posteriori decision-making process, during which the most appropriate solution of the Pareto set is selected by a professional in the field. Conventional visualization methods do not correct for Pareto fronts with irregularly-spaced solutions. However, achieving a uniform spread of solutions can make the decision-making process more intuitive when decision tools such as sliders, which represent the preference for each objective, are used. We propose a method that maps an m-dimensional Pareto front to an (m - 1)-simplex and spreads out points to achieve a more uniform distribution of these points in the simplex while maintaining the local neighborhood structure of the solutions as much as possible. This set of points can then more intuitively be navigated due to the more uniform distribution. We test our approach on a set of non-uniformly spaced 3D Pareto fronts of a real-world problem: deformable image registration of medical images. The results of these experiments are visualized as points in a triangle, showing that we indeed achieve a representation of the Pareto front with a near-uniform distribution of points where these are still positioned as expected, i.e., according to their quality in each of the objectives of interest. |
Databáze: | OpenAIRE |
Externí odkaz: |