Completeness Theorem for Eigenparameter Dependent Dissipative Dirac Operator with General Transfer Conditions
Autor: | Zhaowen Zheng, Maozhu Zhang, Jinming Cai, Kun Li |
---|---|
Rok vydání: | 2020 |
Předmět: |
Article Subject
Characteristic function (probability theory) 010102 general mathematics Mathematics::Spectral Theory Dissipative operator Eigenfunction Dirac operator 01 natural sciences 010101 applied mathematics Matrix (mathematics) symbols.namesake Completeness (order theory) QA1-939 Dissipative system symbols Boundary value problem 0101 mathematics Mathematics Analysis Mathematical physics |
Zdroj: | Journal of Function Spaces, Vol 2020 (2020) |
ISSN: | 2314-8888 2314-8896 |
DOI: | 10.1155/2020/8718930 |
Popis: | This paper deals with a singular (Weyl’s limit circle case) non-self-adjoint (dissipative) Dirac operator with eigenparameter dependent boundary condition and finite general transfer conditions. Using the equivalence between Lax-Phillips scattering matrix and Sz.-Nagy-Foiaş characteristic function, the completeness of the eigenfunctions and associated functions of this dissipative operator is discussed. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |