Peptidic Sulfhydryl for Interfacing Nanocrystals and Subsequent Sensing of SARS-CoV-2 Protease

Autor: Zhicheng Jin, Justin Yeung, Jiajing Zhou, Yong Cheng, Yi Li, Yash Mantri, Tengyu He, Wonjun Yim, Ming Xu, Zhuohong Wu, Pavla Fajtova, Matthew N. Creyer, Colman Moore, Lei Fu, William F. Penny, Anthony J. O’Donoghue, Jesse V. Jokerst
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Chemistry of Materials
ISSN: 1520-5002
0897-4756
Popis: There is a need for surveillance of COVID-19 to identify individuals infected with SARS-CoV-2 coronavirus. Although specific, nucleic acid testing has limitations in terms of point-of-care testing. One potential alternative is the nonstructural protease (nsp5, also known as Mpro/3CLpro) implicated in SARS-CoV-2 viral replication but not incorporated into virions. Here, we report a divalent substrate with a novel design, (Cys)2–(AA)x–(Asp)3, to interface gold colloids in the specific presence of Mpro leading to a rapid and colorimetric readout. Citrate- and tris(2-carboxyethyl)phosphine (TCEP)-AuNPs were identified as the best reporter out of the 17 ligated nanoparticles. Furthermore, we empirically determined the effects of varying cysteine valence and biological media on the sensor specificity and sensitivity. The divalent peptide was specific to Mpro, that is, there was no response when tested with other proteins or enzymes. Furthermore, the Mpro detection limits in Tris buffer and exhaled breath matrices are 12.2 and 18.9 nM, respectively, which are comparable to other reported methods (i.e., at low nanomolar concentrations) yet with a rapid and visual readout. These results from our work would provide informative rationales to design a practical and noninvasive alternative for COVID-19 diagnostic testing—the presence of viral proteases in biofluids is validated.
Databáze: OpenAIRE