Investigation of the Formation of CuInS2 Nanoparticles by the Oleylamine Route: Comparison of Microwave-Assisted and Conventional Syntheses
Autor: | Thomas Rath, Ferdinand Hofer, Mostafa Baghbanzadeh, Wernfried Haas, C. Oliver Kappe, Gregor Trimmel, Eugen Maier, Andreas Pein, Heinz Amenitsch |
---|---|
Rok vydání: | 2010 |
Předmět: |
Range (particle radiation)
Ligand Chemistry Inorganic chemistry Nanoparticle Synchrotron radiation chemistry.chemical_element 02 engineering and technology 010402 general chemistry 021001 nanoscience & nanotechnology 01 natural sciences Sulfur 0104 chemical sciences Inorganic Chemistry Solvent chemistry.chemical_compound Oleylamine Crystallite Physical and Theoretical Chemistry 0210 nano-technology |
Zdroj: | Inorganic Chemistry. 50:193-200 |
ISSN: | 1520-510X 0020-1669 |
DOI: | 10.1021/ic101651p |
Popis: | The formation of copper indium disulfide nanoparticles via the oleylamine route using copper iodide, indium chloride, and elemental sulfur has been investigated by applying conventional thermal heating as well as microwave irradiation. Oleylamine thereby acts as a capping ligand as well as a solvent. In an initial set of experiments, the onset of the reaction was determined to be around 115 °C by an in situ X-ray study using Synchrotron radiation. Using comparatively low synthesis temperatures of 120 °C, it is already possible to obtain nanoparticles of 2-4 nm with both heating methods but with irregular shape and size distribution. By applying higher temperatures of 220 °C, more crystalline and larger nanoparticles were obtained with slight differences in crystallite size and size distribution depending on the synthesis route. The size of the nanoparticles is in the range of 3-10 nm depending on the heating time. Using microwave irradiation, it is possible to obtain nanoparticles in only 90 s of total synthesis time. Control experiments to probe a nonthermal microwave effect were carried out ensuring an identical experimental setup, including the heating profile, the stirring rate, and the volume and concentration of the solutions. These experiments clearly demonstrate that for the preparation of CuInS(2) nanoparticles described herein no differences between conventional and microwave heating could be observed when performed at the same temperature. The nanoparticles obtained by microwave and thermal methods have the same crystal phase, primary crystallite size, shape, and size distribution. In addition, they show no significant differences concerning their optical properties. |
Databáze: | OpenAIRE |
Externí odkaz: |