Popis: |
Experimental results, measured on and above a dimpled test surface placed on one wall of a channel, are given for Reynolds numbers from 1,250 to 61,500 and ratios of air inlet stagnation temperature to surface temperature ranging from 0.68 to 0.94. These include flow visualizations, surveys of time-averaged total pressure and streamwise velocity, and spatially-resolved local Nusselt numbers, which are measured using infrared thermography, used in conjunction with energy balances, thermocouples, and in situ calibration procedures. The ratio of channel height to dimple print diameter is 0.5. Flow visualizations show vortical fluid and vortex pairs shed from the dimples, including a large upwash region and packets of fluid emanating from the central regions of each dimple, as well as vortex pairs and vortical fluid which form near dimple diagonals. These vortex structures augment local Nusselt numbers near the downstream rims of each dimple, both slightly within each depression, and especially on the flat surface just downstream of each dimple. Such augmentations are spread over larger surface areas and become more pronounced as the ratio of inlet stagnation temperature to local surface temperature decreases. As a result, local and spatially-averaged heat transfer augmentations become larger as this temperature ratio decreases. This is due to the actions of vortical fluid in advecting cool fluid from the central parts of the channel to regions close to the hotter dimpled surface.Copyright © 2000 by ASME |