Lipopolysaccharide-induced maternal immune activation modulates microglial CX3CR1 protein expression and morphological phenotype in the hippocampus and dentate gyrus, resulting in cognitive inflexibility during late adolescence
Autor: | Chloé Lacabanne, Lourdes Fernández de Cossío, Maude Bordeleau, Garance Castino, Phillip Kyriakakis, Marie-Ève Tremblay |
---|---|
Rok vydání: | 2021 |
Předmět: |
Lipopolysaccharides
Male medicine.medical_specialty Adolescent Autism Spectrum Disorder Offspring Immunology CX3C Chemokine Receptor 1 Hippocampus Inflammation Biology Hippocampal formation 03 medical and health sciences Behavioral Neuroscience Cognition 0302 clinical medicine Pregnancy Internal medicine CX3CR1 medicine Humans 030304 developmental biology 0303 health sciences Microglia Endocrine and Autonomic Systems Dentate gyrus Neurogenesis Phenotype Endocrinology medicine.anatomical_structure Dentate Gyrus Female medicine.symptom 030217 neurology & neurosurgery |
Zdroj: | Brain, Behavior, and Immunity. 97:440-454 |
ISSN: | 0889-1591 |
Popis: | Inflammation during pregnancy can disturb brain development and lead to disorders in the progeny, including autism spectrum disorder and schizophrenia. However, the mechanism by which a prenatal, short-lived increase of cytokines results in adverse neurodevelopmental outcomes remains largely unknown. Microglia-the brain's resident immune-cells-stand as fundamental cellular mediators, being highly sensitive and responsive to immune signals, which also play key roles during normal development. The fractalkine signaling axis is a neuron-microglia communication mechanism used to regulate neurogenesis and network formation. Previously, we showed hippocampal reduction of fractalkine receptor (Cx3cr1) mRNA at postnatal day (P) 15 in male offspring exposed to maternal immune activation induced with lipopolysaccharide (LPS) during late gestation, which was concomitant to an increased dendritic spine density in the dentate gyrus, a neurogenic niche. The current study sought to evaluate the origin and impact of this reduced hippocampal Cx3cr1 mRNA expression on microglia and cognition. We found that microglial total cell number and density are not affected in the dorsal hippocampus and dentate gyrus, respectively, but that the microglial CX3CR1 protein is decreased in the hippocampus of LPS-male offspring at P15. Further characterization of microglial morphology in the dentate gyrus identified a more ameboid phenotype in LPS-exposed offspring, predominantly in males, at P15. We thus explored maternal plasma and fetal brain cytokines to understand the mechanism behind microglial priming, showing a robust immune activation in the mother at 2 and 4 hrs after LPS administration, while only IL-10 tended towards upregulation at 2 hrs after LPS in fetal brains. To evaluate the functional long-term consequences, we assessed learning and cognitive flexibility behavior during late adolescence, finding that LPS affects only the latter with a male predominance on perseveration. A CX3CR1 gene variant in humans that results in disrupted fractalkine signaling has been recently associated with an increased risk for neurodevelopmental disorders. We show that an acute immune insult during late gestation can alter fractalkine signaling by reducing the microglial CX3CR1 protein expression, highlighting neuron-microglial fractalkine signaling as a relevant target underlying the outcomes of environmental risk factors on neurodevelopmental disorders. |
Databáze: | OpenAIRE |
Externí odkaz: |