Bolza Quaternion Order and Asymptotics of Systoles Along Congruence Subgroups

Autor: Mikhail G. Katz, Uzi Vishne, Michael M. Schein, Karin U. Katz
Rok vydání: 2016
Předmět:
Zdroj: Experimental Mathematics. 25:399-415
ISSN: 1944-950X
1058-6458
DOI: 10.1080/10586458.2015.1073642
Popis: We give a detailed description of the arithmetic Fuchsian group of the Bolza surface and the associated quaternion order. This description enables us to show that the corresponding principal congruence covers satisfy the bound sys(X) > 4/3 log g(X) on the systole, where g is the genus. We also exhibit the Bolza group as a congruence subgroup, and calculate out a few examples of "Bolza twins" (using magma). Like the Hurwitz triplets, these correspond to the factoring of certain rational primes in the ring of integers of the invariant trace field of the surface. We exploit random sampling combined with the Reidemeister-Schreier algorithm as implemented in magma to generate these surfaces.
35 pages, to appear in Experimental Mathematics
Databáze: OpenAIRE