The Witt vectors for Green functors
Autor: | Michael A. Hill, Tyler Lawson, Andrew J. Blumberg, Teena Gerhardt |
---|---|
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
Algebra and Number Theory Functor Hochschild homology 010102 general mathematics K-Theory and Homology (math.KT) Group Theory (math.GR) Mathematics::Algebraic Topology 01 natural sciences Noncommutative geometry Invariant theory Mathematics::K-Theory and Homology Mathematics - K-Theory and Homology 0103 physical sciences Spectral sequence FOS: Mathematics Algebraic Topology (math.AT) Mathematics - Algebraic Topology 010307 mathematical physics 0101 mathematics Algebraic number Mathematics - Group Theory Witt vector Mathematics Flatness (mathematics) |
Zdroj: | Journal of Algebra. 537:197-244 |
ISSN: | 0021-8693 |
DOI: | 10.1016/j.jalgebra.2019.07.014 |
Popis: | We define twisted Hochschild homology for Green functors. This construction is the algebraic analogue of the relative topological Hochschild homology $THH_{C_n}(-)$, and it describes the $E_2$ term of the K\"unneth spectral sequence for relative $THH$. Applied to ordinary rings, we obtain new algebraic invariants. Extending Hesselholt's construction of the Witt vectors of noncommutative rings, we interpret our construction as providing Witt vectors for Green functors. Comment: Minor revisions. Published version |
Databáze: | OpenAIRE |
Externí odkaz: |