Modern algorуthm of microbiological diagnostics of antibiotic-associated diarrhea and pseudomembranous colitis due to Clostridioides difficile

Autor: Kyryk, D. L., Polishchuk, N. M., Kolycheva, N.L., Yeryomina, A.K., Kucher, T.V.
Jazyk: ukrajinština
Rok vydání: 2022
Předmět:
ISSN: 2310-1210
DOI: 10.5281/zenodo.6350087
Popis: Introduction. Today, the problem of C. difficile-associated infection (Cdl-AI) is most often associated with two clinical manifestations - antibiotic-associated diarrhea (AAD) and pseudomembranous colitis (PMC), which are frequent side effects of antibacterial drugs and are manifested from a mild form to a severe course of the disease. According to the authors, AAD is registered in 3.2���29.0% of patients, and the risk of developing PMK in operated patients ranges from 14 to 27%. The problem of detection and treatment of Cdl-AI is extremely relevant today due to the increased frequency of AAD and PMK registration in patients with coronavirus disease (COVID-19), who received high doses of antibiotics and cytokine storm blockers during treatment. In modern foreign literature, AAD and PMK are described as "nosocomial colitis". The category of patients - asymptomatic carriers of C. difficile, which are becoming an epidemiologically dangerous category, maintaining the circulation of the pathogen in hospitals is of particular concern. The relevance of Cdl-AI requires the search for effective methods and measures of laboratory diagnosis of AAD and PMK, aimed at identifying and studying the biological properties of pathogens of these diseases. Materials and methods. To achieve this goal, a literature search was conducted using the English-language text database PubMed using the keywords "C. difficile-associated infection", "antibiotic-associated diarrhea", "pseudomembranous colitis". Results and discussion. The basis of research algorythms in the diagnosis of Cdl-AI is the detection of the enzyme glutamate dehydrogenase (GDG) with the determination of the presence of exotoxins or genes encoding GDG, TcdA, TcdB and binary toxin and bacteriological examination of the material to identify pure cultures of the pathogen and study its biological properties. The American and European Societies of Microbiologists recommend a two-step algorythm that includes a screening test for the detection of GDG in feces and the detection of exotoxins (TcdA, TcdB) using serological methods such as enzyme-linked immunosorbent assay (ELISA) and immunochromatographic analysis. If the ELISA or IHA test is positive, a bacteriological examination of the material is performed, followed by a study of the toxigenic properties and sensitivity of the isolated C. difficile strains to ABP. The most optimal is a three-step algorythm for laboratory diagnosis of Cld-AI, which involves the determination of genes encoding GDG, toxins A / B and binary toxin C. difficile. Obtaining a negative PCR result makes it possible to stop the search for the pathogen in the test material, and vice versa: obtaining a positive result (the first stage) involves a bacteriological examination of samples to isolate pure culture of the pathogen (the second stage) and study its sensitivity to antibiotics (the third stage). To increase the specificity of the PCR method, a two-step PCR protocol has been proposed, with using primers to the 16S region of C. difficile ribosomal RNA, which made it possible to identify more than 150 ribotypes and 24 C. difficile toxinotypes. As an alternative to PCR ribotyping, the MALDI-TOF method of mass spectrometry (Matrix assisted laser desorption / ionization time-of-flight mass spectrometry) has been proposed to investigate epidemic outbreaks. profiles of bacteria and identify pure cultures of C. difficile. MALDI-TOF mass spectrometry and PCR ribotyping can be used to monitor the spread of the pathogen and to carry out anti-epidemic measures. Conclusions. 1. Under the current conditions of uncontrolled use of antibiotics in health care facilities, the incidence of Cdl-AI has a steady upward trend. 2. Adherence to a certain algorythm for the diagnosis of Cdl-AI is necessary for the timely detection of AAD and PMK and prevent the development of severe forms. 3. Consistent implementation of the stages of diagnosis of AAD and PMK avoids the spread of nosocomial strains of clostridia in a hospital.
{"references":["Moskaliuk V. D., Rudan I. V., Balaniuk I. V. [et al.] Antibiotic-associated diarrhea due to Clostridium difficile // Zaporozhye medical journal. 2018. Vol. 20, N 5(110). С. 729–733. DOI: https://doi.org/10.14739/2310-1210.2018.5.141730","Malov V.A. Antibiotic-Associated Diarrhea // Clinical Microbiology and Antimicrobial Chemotherapy. 2002. Vol. 4, N 1. Р. 185–197. URL: https://cmac-journal.ru/publication/2002/1/cmac-2002-t04-n1-p022/cmac-2002-t04-n1-p022.pdf","Lysyuk Yu. S., Andryushchenko V.P., Kohut L.M. [et al.] Pseudomembranous colitis: multidisciplinary principles of prevention, diagnosis and treatment policy // Scientific Bulletin of Uzhgorod University. Series: Medicine. 2016. N 2. Р. 105-111. URL: https://dspace.uzhnu.edu.ua/jspui/handle/lib/11822","Yu. S. Lysiuk, L. M. Kohut, D. L. Romanchak [et al.] Pseudomembranous colitis – the practical aspects of diagnosis and treatment (brief literature review) // Hospital surgery. 2017. N 4. Р. 96-100. URL: http://nbuv.gov.ua/UJRN/shpkhir_2017_4_20","Hall I.C., O'Toole E. Intestinal flora in newborn infants with a description of a new pathogenic anaerobe, Bacillus difficilis // Am. J. Dis. Child. 1935. N 49. Р. 390.","Stepanov Y.M., Simonova E.V., Budzak I.Y. [et al.] Clostridium difficile-associated colitis: literature review, case report // Gastroenterology. 2020. N 54 (3). Р. 188-201. DOI: https://doi.org/10.22141 / 2308-2097.54.3.2020.211739","Chyornenkaya T.V. Pseudomembranous colitis: diagnosis, treatment and prevention // Russian Sklifosovsky Journal \"Emergency Medical Care\". 2016. N 1. Р. 33–39. URL: https://www.jnmp.ru/jour/article/view/114/115","Bartlett J.G., Onderdonk A.B., Cisneros R.L. [et al.] Clindamycin-associated colitis due to a toxin-producing species of Clostridium in hamsters // J. Infect. Dis. 1977. N 136. Р. 701–705. URL: http://dx.doi.org/10.1093/infdis/136.5.701","Nasser H., Munie S., Shakaroun D. [et al.] Clostridium difficile Enteritis after Total Abdominal Colectomy for Ulcerative Colitis // Case Rep. Crit. Care. 2019. Р. 1-4. DOI: https://doi.org/10.1155/2019/2987682","Kato H., Kato N., Watanabe K. [et al.] Analysis of Clostridium difficile Isolates from Nosocomial Outbreaks at Three Hospitals in Diverse Areas of Japan // J. Clin. Microbiol. 2001. N 39(4). P. 1391–1395. DOI: https://doi.org/10.1128/JCM.39.4.1391-1395.2001","Kazanowski M., Smolarek S., Kinnarney F. [et al.] Clostridium difficile: epidemiology, diagnostic and therapeutic possibilities – a systematic review // Tech. Coloproctol. 2014. N 18 (3). Р. 223–232. DOI: https://doi.org/10.1007/s10151-013-1081-0","Spigaglia P. COVID-19 and Clostridioides difficile infection (CDI): Possible implications for elderly patients // Anaerobe. 2020. N 64: 102233. DOI: https://doi.org/10.1016/j.anaerobe.2020.102233","Ferreira Ed.O., Penna B., Yates E.A. Should We Be Worried About Clostridioides difficile During the SARS-CoV2 Pandemic? // Front. Microbiol. 2020. N 11. Р. 1-4. DOI: https://doi.org/10.3389/fmicb.2020.581343","Sipos S., Vlad C., Prejbeanu R. [et al.] Impact of COVID-19 prevention measures on Clostridioides difficile infections in a regional acute care hospital // Experimental and therapeutic medicine. 2021. DOI: https://doi.org/10.3892/etm.2021.10649","Crobach M.J.T., Vernon J.J., G.L. Vivian [et al.] Understanding Clostridium difficile Colonization. // American Society for Microbiology.Clinical Microbiology Reviews. 2018. N 31(2). Р. 1-29. DOI: https://doi.org/10.1128/CMR.00021-17","Guh Y., L. McDonald Cl. Active Surveillance and Isolation of Asymptomatic Carriers of Clostridium difficile at Hospital Admission: Containing What Lies Under the Waterline Alice // JAMA Intern. Med. 2016. N 176(6). Р. 805–806.","Chandrasekaran R., Lacy D. The role of toxins in Clostridium difficile // FEMS Microbiology Reviews. 2017. N 41(6). P. 723–750. DOI: https://doi.org/10.1093/femsre/fux048","Kostic A. D., Xavier R. J., Gevers D. The Microbiome in iflammatory bowel diseases: current status and the future ahead // Gastroenterology. 2014. N 146 (6). P. 1489-1499. DOI: https://doi.org/10.1053/j.gastro.2014.02.009","Bacci S., Mølbak K., Kjeldsen M. [et al.] Binary toxin and death after Clostridium difficile infection //Emerg. Infect. Dis. 2011. N 17(6). P.976-982. DOI: https://doi.org/10.3201/eid/1706.101483","Warny, M., Pepin, J., Fang, A. [et al.] Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe // Lancet. 2005. N 366(9491). Р 1079–1084. DOI: https://doi.org/10.1016/S0140-6736(05)67420-X","Stanley, J., Bartlett, J.,Dart, B. [et al.] Clostridium difficile infection //Curr. Probl. Surg. 2013. N 50. Р. 302–337. DOI: https://doi.org/10.1067/j.cpsurg.2013.02.004","He, M.; Miyajima, F.; Roberts, P. [et al.] Emergence and global spread of epidemic healthcare-associated Clostridium difficile // Nat. Genet. 2013. N 45(1). Р. 1–12. DOI: https://doi.org/10.1038/ng.2478.","Davies K.A., Ashwin H., Longshaw C.M. [et al.] Diversity of Clostridium difficile PCR ribotypes in Europe: Results from the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID), 2012 and 2013 // Eurosurveillance. 2016. N 21(29). Р. 1-11. DOI: https://doi.org/10.2807/1560-7917.ES.2016.21.29.30294","Azimirad M., Azizi O., Alebouyeh M. [et al.] Molecular analysis and genotyping of pathogenicity locus in Clostridioides difficile strains isolated from patients in Tehran hospitals during the years 2007-2010 // Infect. Genet. Evol. 2019. N 71. Р. 205-210. DOI: https://doi.org/10.1016/j.meegid.2019.03.010","Putsathit P., Maneerattanaporn M., Piewngam P. [et al.] Prevalence and molecular epidemiology of Clostridium difficile infection in Thailand // New Microbes and New Infections. 2017. N 15(1). P. 27-32. DOI: https://doi.org/10.1016/j.nmni.2016.10.004.","Shelygin Yu.A., Aleshkin V.A., Sukhina M.A. [et al.] Сlinical recommendations of the National Association of specialists for the healthcare related infections control and the russian association of coloproctology on diagnosis, treatment and prophylaxis of Clostridium difficile-associated diarrhea // coloproctology. 2018. N 3 (65). Р. 7-23.","Crobach M.J., Dekkers O.M., Wilcox M.H. European Society of Clinical Microbiology and Infectious Diseases (ESCMID): data review and recommendations for diagnosing Clostridium difficile-infection (CDI) // Clin. Microbiol. Infect. 2009. N 15(12). P.1053- 1066. DOI: https://doi.org/10.1111/j.1469-0691.2009.03098.x.","A practical guidance document for the laboratory detection of toxigenic Clostridium difficile.-Washington, DC: American Society for Microbiology, 2010. URL: http: // www.asm.org/images/pdf/Clinical/clostridiumdifficile9-21.pdf.","Lobzin Yu.V, Zakharenko S.V., Ivanov G.A. Current Understanding of Clostridium difficile infection // Сlinical microbiology and antimicrobial chemotherapy. 2002. N 4(3). Р. 200–232. URL: https://cmac-journal.ru/publication/2002/3/cmac-2002-t04-n3-p200/cmac-2002-t04-n3-p200.pdf","BBL Clostridium difficile Selective Agar. URL: https://www.bd.com/resource.aspx?IDX=24511","Darkoh Ch., DuPont H.L., Kaplan H.B. Novel One-Step Method for Detection of Clostridium difficile Strains Directly from Isolation of ActiveToxin-Producing Stool Samples // J. Clin. Microbiol. 2011. N 49(12). P. 4219-4224. DOI: https://doi.org/10.1128/JCM.01033-11","Kyryk D.L. Molecular techniques in diagnostic microbiological practice and epidemiological analysis // Preventive medicine. 2015. N 1-2(24). Р.127-135. URL: https://duieih.kiev.ua/documents/journal/1-2_2015%20.pdf","Griffiths D., Fawley W., Kachrimanidou M. [et al.] Multilocus Sequence Typing of Clostridium difficile // J.Clin. Microbiol. 2010. N 48(3). P. 770–778. DOI: https://doi.org/10.1007/978-1-60327-365-7_6","Goorhuis A., Legaria M.C., van den Berg R.J. [et al.] Application of multiple-locus variablenumber tandem-repeat analysis to determine clonal spread of toxin A-negative Clostridium difficile in a general hospital in Buenos Aires, Argentina // Clin. Microbiol. Infect. 2009. N 15(12). P. 1080–1086. DOI: https://doi.org/10.1111/j.1469-0691.2009.02759.x.","Kuhl S.J., Tang Y., Navarro L. [et al.] Diagnosis and monitoring of Clostridium difficile infections with the polymerase chain reaction // Clin. Infect. Dis. 1993. N 16(4). Р. 234–238. DOI: https://doi.org/10.1093/clinids/16.supplement_4.s234","Calderaro A., Buttrini M., Martinelli M. [et al.] Rapid Classification of Clostridioides difficile Strains Using MALDI-TOF MS Peak-Based Assay in Comparison with PCR-Ribotyping. Microorganisms. 2021. N 9(3). Р.1-12. DOI: https://doi.org/10.3390/microorganisms9030661","Ruxin Li, Di Xiao, Jing Yang. Identification and Characterization of Clostridium difficile Sequence Type","Genotype by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2018. N 56(5). Р.1-9. DOI:https://doi.org/10.1128/JCM.01990-17","Borriello S.P., Wren B.W., Hyde S. [et al.] Molecular, immunological and biological characterization of a toxin A negative, toxin B positive strain of Clostridium difficile // Infect. Immun. 1992. N 60(10). Р. 4192–4199. DOI: https://doi.org/10.1128/iai.60.10.4192-4199.1992","Kvetnaya A.S., Makridi P.S., Behtereva M.K. Modern Recent on the Laboratory Diagnosis of Clostridium Difficile-associated Infection // Journal of infectiology. 2013. N 5(3). Р .5-12. URL: https://journal.niidi.ru/jofin/article/viewFile/180/174","Vanpoucke H., Baere T.De, Claeys G. [et al.] Evaluation of six commercial assays for the rapid detection of Clostridium difficile toxin and/or antigen in stool specimens // Clin. Microbiol. Infect. 2001. N 7(2). P. 55–64. DOI: https://doi.org/10.1046/j.1469-0691.2001.00141.x","Sambol, S.P., Merrigan M. M., Lyerly D. [et al.] Toxin gene analysis of a variant strain of Clostridium difficile that causes human clinical disease // Infect. Immun. 2000. N 68( 10). P. 5480–5487. DOI: https://doi.org/10.1128/iai.68.10.5480-5487.2000","Staneck J.L., Weckbach L.S., Allen S.D. [et al.] Multicenter evaluation of four methods for Clostridium difficile detection: ImmunoCard C. difficile, cytotoxin assay, culture, and latex agglutination // J. Clin. Microbiol. 1996. 34( 11 ). P. 2718–2721.","Gerding, D.N., Johnson S., Peterson L.R. [et al.] Clostridium difficile associated diarrhea and colitis // Infect. Control. Hosp. Epidemiol. 1995. 16( 8). Р.459–477","Sukhina M.A., Safin A.L. The actual condition of laboratory diagnostic of Clostridium difficile-associated diarrhea; the methods of detection of toxigenic strains (review of publications) // Russian Clinical Laboratory Diagnostics. 2017. 62(10). Р.635-640. DOI: http://dx.doi.org/10.18821/0869-2084-2017-62-10-635-640.","Shahrabadi M.S., Bryan L.E., Gaffney D. [et al.] Latex agglutination test for detection of Clostridioum difficile toxin in stool samples // J. Clin. Microbiol. 1984. 20( 3). P. 339–341.","Kim H., Jeong S. H., Kim M. [et al.] Detection of Clostridium difficile toxin A/B genes by multiplex real-time PCR for the diagnosis of C. difficile infection // Journal of Medical Microbiology. 2012. 61(2). P. 274–277. DOI: http://dx.doi.org/10.1099/jmm.0.035618-0"]}
Databáze: OpenAIRE