Interactions between Phase-Separated Liquids and Membrane Surfaces
Autor: | Tobias Baumgart, Samuel Botterbusch |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
02 engineering and technology
lcsh:Technology Article lcsh:Chemistry 03 medical and health sciences Protein structure complex coacervation Biological phase Phase (matter) Organelle biomolecular condensates General Materials Science Instrumentation lcsh:QH301-705.5 030304 developmental biology aqueous two-phase systems Fluid Flow and Transfer Processes 0303 health sciences Chemistry lcsh:T Process Chemistry and Technology Peripheral membrane protein General Engineering biomimetic membranes liquid-liquid phase separation 021001 nanoscience & nanotechnology lcsh:QC1-999 Computer Science Applications Membrane lcsh:Biology (General) lcsh:QD1-999 Chemical physics lcsh:TA1-2040 Lipid vesicle Wetting 0210 nano-technology lcsh:Engineering (General). Civil engineering (General) lcsh:Physics |
Zdroj: | Applied Sciences, Vol 11, Iss 1288, p 1288 (2021) Applied sciences (Basel, Switzerland) |
ISSN: | 2076-3417 |
Popis: | Liquid-liquid phase separation has recently emerged as an important fundamental organizational phenomenon in biological settings. Most studies of biological phase separation have focused on droplets that “condense” from solution above a critical concentration, forming so-called “membraneless organelles” suspended in solution. However, membranes are ubiquitous throughout cells, and many biomolecular condensates interact with membrane surfaces. Such membrane-associated phase-separated systems range from clusters of integral or peripheral membrane proteins in the plane of the membrane to free, spherical droplets wetting membrane surfaces to droplets containing small lipid vesicles. In this review, we consider phase-separated liquids that interact with membrane surfaces and we discuss the consequences of those interactions. The physical properties of distinct liquid phases in contact with bilayers can reshape the membrane, and liquid-liquid phase separation can construct membrane-associated protein structures, modulate their function, and organize collections of lipid vesicles dynamically. We summarize the common phenomena that arise in these systems of liquid phases and membranes. |
Databáze: | OpenAIRE |
Externí odkaz: |