Controlled deposition of fullerene derivatives within a graphene template by means of a modified Langmuir-Schaefer method

Autor: Dimitrios Gournis, Nikolaos Chalmpes, Panagiota Zygouri, Vassilis N. Stathopoulos, Petra Rudolf, Nikolaos Vourdas, Antonios Kouloumpis, Konstantinos Spyrou, Vasilios Kostas, Georgia Potsi
Přispěvatelé: Surfaces and Thin Films
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Journal of Colloid and Interface Science, 524, 388-398. ACADEMIC PRESS INC ELSEVIER SCIENCE
ISSN: 0021-9797
Popis: The scientific and technological potential of graphene's includes the development of light, open 3D hybrid structures with high surface area, tunable pore size and aromatic functionalities. Towards this aim, we describe a scalable and low-cost bottom-up approach that combines self-assembly and Langmuir-Schaefer deposition for the production of fullerene-intercalated graphene oxide hybrids. This method uses graphene oxide (GO) nanosheets as template for the attachment of two types of fullerene derivatives (bromo-fullerenes, C60Br24 and fullerols, C-60(OH)(24)) in a bi-dimensional arrangement, allowing a layerby-layer growth with control at nanoscale. Our film preparation approach relies on a bottom-up process that includes the formation of a hybrid organo-graphene Langmuir film, which is transferred onto a substrate and then brought in contact with C-60(OH)(24) molecules in solution to induce self-assembly. In the case of grafting C60Br24 molecules into graphene a further modification of the GO platelets was performed by bringing the surface of the transferred GO Langmuir film in contact with a second amino surfactant solution. Repeating these deposition cycles, pillared structures were fabricated in thin films form. These fullerene-based hybrid thin films were characterized by Raman and X-ray photoelectron (XPS) spectroscopies, X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and contact angle measurements. (C) 2018 Elsevier Inc. All rights reserved.
Databáze: OpenAIRE