The Dixmier-Douady Classes of Certain Groupoid $C^*$-Algebras with Continuous Trace
Autor: | Marius Ionescu, Dana P. Williams, Alex Kumjian, Aidan Sims |
---|---|
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
Algebra and Number Theory Mathematics::Operator Algebras Mathematics - Operator Algebras Mathematics::Algebraic Geometry Mathematics::K-Theory and Homology Mathematics::Category Theory FOS: Mathematics Equivalence relation Sheaf Locally compact space Abelian group Invariant (mathematics) Operator Algebras (math.OA) Mathematics |
DOI: | 10.48550/arxiv.1801.00832 |
Popis: | Given a locally compact abelian group G, we give an explicit formula for the Dixmier-Douady invariant of the C∗-algebra of the groupoid extension associated to a Cech 2-cocycle in the sheaf of germs of continuous G-valued functions. We then exploit the blow-up construction for groupoids to extend this to some more general central extensions of etale equivalence relations. |
Databáze: | OpenAIRE |
Externí odkaz: |