Trapping and Stabilization of Integral Membrane Proteins by Hydrophobically Grafted Glucose-Based Telomers
Autor: | Christine Ebel, Paola Bazzacco, Jean-Luc Popot, K. Shivaji Sharma, Bernard Pucci, Fabrice Giusti, Grégory Durand |
---|---|
Přispěvatelé: | Physico-chimie moléculaire des membranes biologiques (PCMMB), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut de biologie structurale (IBS - UMR 5075 ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Chimie Bioorganique et des Systèmes Moléculaires Vectoriels (LCBOSMV), Avignon Université (AU), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Institut de biologie structurale (IBS - UMR 5075), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2009 |
Předmět: |
Glycosylation
Polymers and Plastics Polymers Bioengineering 010402 general chemistry 01 natural sciences Biomaterials 03 medical and health sciences chemistry.chemical_compound Amphiphile Materials Chemistry Organic chemistry Denaturation (biochemistry) [SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM] Integral membrane protein ComputingMilieux_MISCELLANEOUS 030304 developmental biology chemistry.chemical_classification 0303 health sciences biology [CHIM.ORGA]Chemical Sciences/Organic chemistry Membrane Proteins Water Bacteriorhodopsin Polymer Combinatorial chemistry Transmembrane protein [SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biomolecules [q-bio.BM] 0104 chemical sciences [SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biophysics Glucose Immobilized Proteins [CHIM.POLY]Chemical Sciences/Polymers Monomer Solubility chemistry Membrane protein Bacteriorhodopsins biology.protein Hydrophobic and Hydrophilic Interactions Bacterial Outer Membrane Proteins |
Zdroj: | Biomacromolecules Biomacromolecules, 2009, 10 (12), pp.3317-3326. ⟨10.1021/bm900938w⟩ Biomacromolecules, American Chemical Society, 2009, 10 (12), pp.3317-3326. ⟨10.1021/bm900938w⟩ |
ISSN: | 1526-4602 1525-7797 |
DOI: | 10.1021/bm900938w |
Popis: | Amphipols (APols) are short amphipathic polymers designed to adsorb onto the transmembrane surface of membrane proteins, keeping them water-soluble in the absence of detergent. Current APols carry charged groups, which is a limitation for certain types of applications. This has prompted the development of totally nonionic amphiphols (NAPols). In a previous work, glucose-based NAPols synthesized by free-radical cotelomerization of hydrophilic and amphiphilic monomers proved to be able to keep membrane proteins soluble (Sharma et al. Langmuir 2008, 24, 13581-13590). This provided a proof of principle, but the cumbersome synthesis prevented large-scale production and any detailed biochemical studies. In the present work, we describe a new synthesis route for NAPols based on grafting alkyl chains onto a glucosylated homotelomer. The NAPols thus prepared are highly water soluble. In aqueous solutions, they assemble into small, homogeneous particles similar to those formed by ionic APols. Two model membrane proteins, bacteriorhodopsin and the transmembrane domain of OmpA, form with NAPols small, well-defined water-soluble complexes whose size is comparable to that observed with ionic APols. Complexation by NAPols strongly stabilizes bacteriorhodopsin against denaturation. Glucosylated NAPols thus appear as a promising alternative to ionic APols for such applications as ion-exchange chromatography, isoelectrofocusing, and, possibly, structural approaches such as NMR and crystallography. |
Databáze: | OpenAIRE |
Externí odkaz: |