Estimation of the Hyperspectral Tucker ranks

Autor: Alexis Huck, Mireille Guillaume
Přispěvatelé: Institut FRESNEL (FRESNEL), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)
Jazyk: angličtina
Rok vydání: 2009
Předmět:
Zdroj: Proceeding of IEEE International conference on Acoustics, Speech and Signal Processing 2009
IEEE International conference Acoustics, Speech and Signal Processing 2009 ICASSP 2009
IEEE International conference Acoustics, Speech and Signal Processing 2009 ICASSP 2009, Apr 2009, Tapei, Taiwan. pp.1281-1284, ⟨10.1109/ICASSP.2009.4959825⟩
ICASSP
DOI: 10.1109/ICASSP.2009.4959825⟩
Popis: In hyperspectral image analysis, one often assumes that observed pixel spectra are linear combinations of pure substance spectra. Unmixing a hyperspectral image consists in finding the number of pure substances in the scene, finding their spectral signatures and estimating the abundance fraction of each pure substance spectrum in each spectral pixel. In this paper, we show that the tensor Tucker decomposition could be considered to solve this problem, and a preliminary problem to overcome consists in estimating the 3 required data Tucker ranks, corresponding to the 3 dimensions of the data cube. Then, we propose an optimal method to estimate them.
Databáze: OpenAIRE