Exceptional Legendre Polynomials and Confluent Darboux Transformations

Autor: María Ángeles García-Ferrero, Robert Milson, David Gómez-Ullate
Přispěvatelé: Ingeniería Informática
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: E-Prints Complutense: Archivo Institucional de la UCM
Universidad Complutense de Madrid
SIGMA 17 (2021), 016, 19 pag
RODIN: Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz
Universidad de Cádiz
RODIN. Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz
instname
E-Prints Complutense. Archivo Institucional de la UCM
Popis: Exceptional orthogonal polynomials are families of orthogonal polynomials that arise as solutions of Sturm-Liouville eigenvalue problems. They generalize the classical families of Hermite, Laguerre, and Jacobi polynomials by allowing for polynomial sequences that miss a finite number of "exceptional" degrees. In this paper we introduce a new construction of multi-parameter exceptional Legendre polynomials by considering the isospectral deformation of the classical Legendre operator. Using confluent Darboux transformations and a technique from inverse scattering theory, we obtain a fully explicit description of the operators and polynomials in question. The main novelty of the paper is the novel construction that allows for exceptional polynomial families with an arbitrary number of real parameters.
MAGF would like to thank the Max-Planck-Institute for Mathematics in the Sciences, Leipzig (Germany), where some of her work took place. DGU acknowledges support from the Spanish MICINN under grants PGC2018-096504-B-C33 and RTI2018-100754-B-I00 and the European Union under the 2014-2020 ERDF Operational Programme and by the Department of Economy, Knowledge, Business and University of the Regional Government of Andalusia (project FEDER-UCA18-108393).
Databáze: OpenAIRE