Enhancement of Anandamide-Mediated Endocannabinoid Signaling Corrects Autism-Related Social Impairment
Autor: | Dandan Li, Guillermo Moreno-Sanz, Christine M. Gall, Don Wei, DaYeon Lee, Daniele Piomelli, Drake Dinh, Allison Anguren |
---|---|
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
Elevated plus maze Cannabinoid receptor autism spectrum disorders Neuropeptide 03 medical and health sciences chemistry.chemical_compound 0302 clinical medicine Fatty acid amide hydrolase mental disorders fatty acid amide hydrolase medicine social approach Pharmacology (medical) Original Research Pharmacology Anandamide URB597 medicine.disease CB1 Endocannabinoid system 030104 developmental biology nervous system Complementary and alternative medicine chemistry Biochemistry Fragile X Syndrome Autism lipids (amino acids peptides and proteins) Psychology Neuroscience psychological phenomena and processes 030217 neurology & neurosurgery |
Zdroj: | Cannabis and Cannabinoid Research |
ISSN: | 2378-8763 |
DOI: | 10.1089/can.2015.0008 |
Popis: | Introduction: We recently uncovered a signaling mechanism by which the endocannabinoid anandamide mediates the action of oxytocin, a neuropeptide that is crucial for social behavior, to control social reward. Oxytocin signaling has been implicated in autism spectrum disorder (ASD), and social reward is a key aspect of social functioning that is thought to be disrupted in ASD. Therefore, as a proof of principle for the core component of ASD—social impairment—we tested an endocannabinoid-enhancing compound on two widely studied mouse models of ASD, the BTBR and fmr1−/− (model of Fragile X Syndrome). Methods: We used the established three-chambered social approach test. We specifically increased the activity of anandamide by administering the compound URB597, a selective inhibitor of fatty acid amide hydrolase (FAAH), the hydrolytic enzyme for anandamide. Results: Remarkably, we found that FAAH blockade completely reversed the social impairment in both mouse models. CB1 receptor blockade prevented the prosocial action of FAAH inhibition in BTBR mice. These results were likely independent of effects on anxiety, as FAAH inhibition did not alter the performance of BTBR mice in the elevated plus maze. Conclusions: The results suggest that increasing anandamide activity at CB1 receptors improves ASD-related social impairment and identify FAAH as a novel therapeutic target for ASD. |
Databáze: | OpenAIRE |
Externí odkaz: |