Quadratic modulo 2n Cayley graphs
Autor: | Aurora Olivieri, Reinaldo E. Giudici |
---|---|
Rok vydání: | 2000 |
Předmět: |
Discrete mathematics
Cayley graph Additive group of integer modulo 2n Quadratics residues modulo 2n Modulo Orbits of a group undirected and without loops Cayley graphs Graph Cayley graphs Diameter of a graph Simple Theoretical Computer Science Combinatorics Quadratic residue k-residues modulo pn p a prime number Quadratic equation finite Discrete Mathematics and Combinatorics Triangles of a graph Mathematics Additive group |
Zdroj: | Discrete Mathematics. 215(1-3):73-79 |
ISSN: | 0012-365X |
DOI: | 10.1016/s0012-365x(99)00229-0 |
Popis: | A family of simple, nite, undirected and without loops Cayley graphs Cay(Z2n;QR(2 n )) is studied, where Z2n denotes the additive group of integers modulo 2 n and the set S =S [ f Sg, where S =QR(2 n ) denotes the set of quadratic residues of Z2n, zero excluded. In this paper we show that the diameter of the Cayley graphs Cay(Z2n;QR(2 n )) is 2 and we give recursive formulae for the number of triangles in the graph. In addition, we discuss the number of k-residues modulo p n , p prime and n>1. c 2000 Elsevier Science B.V. All rights reserved. |
Databáze: | OpenAIRE |
Externí odkaz: |