Quadratic modulo 2n Cayley graphs

Autor: Aurora Olivieri, Reinaldo E. Giudici
Rok vydání: 2000
Předmět:
Zdroj: Discrete Mathematics. 215(1-3):73-79
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(99)00229-0
Popis: A family of simple, nite, undirected and without loops Cayley graphs Cay(Z2n;QR(2 n )) is studied, where Z2n denotes the additive group of integers modulo 2 n and the set S =S [ f Sg, where S =QR(2 n ) denotes the set of quadratic residues of Z2n, zero excluded. In this paper we show that the diameter of the Cayley graphs Cay(Z2n;QR(2 n )) is 2 and we give recursive formulae for the number of triangles in the graph. In addition, we discuss the number of k-residues modulo p n , p prime and n>1. c 2000 Elsevier Science B.V. All rights reserved.
Databáze: OpenAIRE