Docosahexaenoic acid liposomes for targeting chronic inflammatory diseases and cancer: An in vitro assessment
Autor: | Alaarg, Amr, Jordan, Nan Yeun, Verhoef, Johan J F, Metselaar, Josbert M., Storm, G, Kok, Robbert J., Sub General Pharmaceutics, Sub Drug delivery, Sub Drug targeting, Pharmaceutics |
---|---|
Přispěvatelé: | Sub General Pharmaceutics, Sub Drug delivery, Sub Drug targeting, Pharmaceutics, Biomaterials Science and Technology, Faculty of Science and Technology |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
METIS-320757 Pharmaceutical Science Pharmacology medicine.disease_cause Monocytes Mice International Journal of Nanomedicine Drug Discovery Cells Cultured Original Research Cancer General Medicine Fish oil Reactive Nitrogen Species 3. Good health Nanomedicine Docosahexaenoic acid Carcinoma Squamous Cell Cytokines Tumor necrosis factor alpha Female medicine.symptom Delivery Docosahexaenoic Acids Biophysics Inflammation Breast Neoplasms Bioengineering Biology In Vitro Techniques Proinflammatory cytokine Biomaterials 03 medical and health sciences Immune system medicine Human Umbilical Vein Endothelial Cells Animals Humans Cell Proliferation Tumor Necrosis Factor-alpha Macrophages Organic Chemistry Squamous carcinoma Oxidative Stress 030104 developmental biology IR-103379 Immunology Liposomes Reactive Oxygen Species Oxidative stress PUFA |
Zdroj: | International Journal of Nanomedicine, 11, 5027. Dove Medical Press Ltd. International Journal of Nanomedicine International journal of nanomedicine 11, 5027-5040 (2016). doi:10.2147/IJN.S115995 International journal of nanomedicine, 11, 5027-5040. Dove Medical Press Ltd. |
ISSN: | 1176-9114 1178-2013 |
DOI: | 10.2147/IJN.S115995 |
Popis: | Amr Alaarg,1,2 Nan Yeun Jordan,1 Johan JF Verhoef,1 Josbert M Metselaar,2,3 Gert Storm,1,2 Robbert J Kok1 1Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 2Department of Biomaterials Science and Technology, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, the Netherlands; 3Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH-Aachen University, Aachen, Germany Abstract: Inflammation, oxidative stress, and uncontrolled cell proliferation are common key features of chronic inflammatory diseases, such as atherosclerosis and cancer. ω3 polyunsaturated fatty acids (PUFAs; also known as omega3 fatty acids or fish oil) have beneficial effects against inflammation upon dietary consumption. However, these effects cannot be fully exploited unless diets are enriched with high concentrations of fish oil supplements over long periods of time. Here, a nanomedicine-based approach is presented for delivering effective levels of PUFAs to inflammatory cells. Nanoparticles are internalized by immune cells, and hence can adequately deliver bioactive lipids into these target cells. The ω3 FA docosahexaenoic acid was formulated into liposomes (ω-liposomes), and evaluated for anti-inflammatory effects in different types of immune cells. ω-Liposomes strongly inhibited the release of reactive oxygen species and reactive nitrogen species from human neutrophils and murine macrophages, and also inhibited the production of the proinflammatory cytokines TNFα and MCP1. Moreover, ω-liposomes inhibited tumor-cell proliferation when evaluated in FaDu head and neck squamous carcinoma and 4T1 breast cancer cells in in vitro cultures. We propose that ω-liposomes are a promising nanonutraceutical formulation for intravenous delivery of fish oil FAs, which may be beneficial in the treatment of inflammatory disorders and cancer. Keywords: nanomedicine, PUFA, inflammation, cancer, fish oil, delivery |
Databáze: | OpenAIRE |
Externí odkaz: |