CRITICAL PROPERTIES OF A GENERAL-CLASS OF Z(5)-SYMMETRICAL SPIN MODELS
Autor: | B. Bonnier, K. Rouidi |
---|---|
Přispěvatelé: | Centre de physique moléculaire optique et hertzienne (CPMOH), Université Sciences et Technologies - Bordeaux 1-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 1990 |
Předmět: |
[PHYS]Physics [physics]
Physics Exchange interaction First order 01 natural sciences Omega 010305 fluids & plasmas Kosterlitz–Thouless transition symbols.namesake 0103 physical sciences Exponent symbols Ising model 010306 general physics Series expansion Hamiltonian (quantum mechanics) ComputingMilieux_MISCELLANEOUS Mathematical physics |
Zdroj: | Physical Review B: Condensed Matter and Materials Physics (1998-2015) Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 1990, 42 (13), pp.8157-8162. ⟨10.1103/PhysRevB.42.8157⟩ |
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.42.8157⟩ |
Popis: | We study the isotropic, ferromagnetic two-dimensional spin systems with Z(5) symmetry, which, in the general case, depend upon two couplings, a temperature and a parameter \ensuremath{\Omega}, used to interpolate continuously between the clock (\ensuremath{\Omega}=0) and the Potts (\ensuremath{\Omega}=1) models, passing through the integrable Fateev-Zamolodchikov case (\ensuremath{\Omega}=${\mathrm{\ensuremath{\Omega}}}_{\mathit{c}}$\ensuremath{\approxeq}0.618). Two methods, the high-temperature expansion and the exact \ensuremath{\beta} function on finite lattices, are applied within the Hamiltonian formulation to study critical properties. The transitions found are first order (${\mathrm{\ensuremath{\Omega}}}_{\mathit{c}}$\ensuremath{\le}1), second order of the Ising type (\ensuremath{\Omega}\ensuremath{\simeq}${\mathrm{\ensuremath{\Omega}}}_{\mathit{c}}$), or of the Kosterlitz-Thouless type (0\ensuremath{\le}\ensuremath{\Omega}${\mathrm{\ensuremath{\Omega}}}_{\mathit{c}}$) with a varying exponent. |
Databáze: | OpenAIRE |
Externí odkaz: |