CRITICAL PROPERTIES OF A GENERAL-CLASS OF Z(5)-SYMMETRICAL SPIN MODELS

Autor: B. Bonnier, K. Rouidi
Přispěvatelé: Centre de physique moléculaire optique et hertzienne (CPMOH), Université Sciences et Technologies - Bordeaux 1-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 1990
Předmět:
Zdroj: Physical Review B: Condensed Matter and Materials Physics (1998-2015)
Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 1990, 42 (13), pp.8157-8162. ⟨10.1103/PhysRevB.42.8157⟩
ISSN: 1098-0121
1550-235X
DOI: 10.1103/PhysRevB.42.8157⟩
Popis: We study the isotropic, ferromagnetic two-dimensional spin systems with Z(5) symmetry, which, in the general case, depend upon two couplings, a temperature and a parameter \ensuremath{\Omega}, used to interpolate continuously between the clock (\ensuremath{\Omega}=0) and the Potts (\ensuremath{\Omega}=1) models, passing through the integrable Fateev-Zamolodchikov case (\ensuremath{\Omega}=${\mathrm{\ensuremath{\Omega}}}_{\mathit{c}}$\ensuremath{\approxeq}0.618). Two methods, the high-temperature expansion and the exact \ensuremath{\beta} function on finite lattices, are applied within the Hamiltonian formulation to study critical properties. The transitions found are first order (${\mathrm{\ensuremath{\Omega}}}_{\mathit{c}}$\ensuremath{\le}1), second order of the Ising type (\ensuremath{\Omega}\ensuremath{\simeq}${\mathrm{\ensuremath{\Omega}}}_{\mathit{c}}$), or of the Kosterlitz-Thouless type (0\ensuremath{\le}\ensuremath{\Omega}${\mathrm{\ensuremath{\Omega}}}_{\mathit{c}}$) with a varying exponent.
Databáze: OpenAIRE