Ultrasound-assisted preparation of a nanostructured zinc(II) amine pillar metal-organic framework as a potential sorbent for 2,4-dichlorophenol adsorption from aqueous solution

Autor: Ghazal Salehi, Ali Reza Mahjoub, Reza Abazari
Rok vydání: 2018
Předmět:
Zdroj: Ultrasonics Sonochemistry. 46:59-67
ISSN: 1350-4177
Popis: Using a green and simple route with ultrasound illumination under atmospheric pressure and at room temperature, the nanosized preparation of a Zn(II) metal-organic framework, [Zn(ATA)(BPD)]∞ (ATA = 2‐aminoterephthalic acid), BPD = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene), having nano-plate shape and 3D channel framework, was considered and the product was named as compound 1. The X-ray diffraction (XRD), scanning electron microscopy (SEM), IR spectroscopy, Brunauer–Emmett–Teller (BET), and thermogravimetric analysis (TGA) were used for characterization of the synthesized micro/nano-structures. Further, impact of different sonication times and initial reagent contents on the shape and size of the micro/nano-structures was investigated. The results show that under ultrasound irradiation non-aggregated plates with uniform morphology can be obtained with content of [0.0125] M of the initial reagents in the presence of triethylamine (TEA) at 120 min. Moreover, through N2 adsorption, effect of the preparation route on the porosity was explored. The bulk and nano-plates of compound 1 were also studied for adsorption of 2,4-dichlorophenol as a pollutant sample. Kinetic studies indicated that 2,4-dichlorophenol adsorption via MOF nano-plates are of first-order kinetics. Also, MOF nano-plates have significantly been reutilized for five times while their adsorption properties have remained unchanged.
Databáze: OpenAIRE