Three-loop corrections to the soft anomalous dimension in multileg scattering

Autor: Claude Duhr, Einan Gardi, Øyvind Almelid
Přispěvatelé: UCL - SST/IRMP - Institut de recherche en mathématique et physique
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Physical Review Letters
Almelid, Ø, Duhr, C & Gardi, E 2016, ' Three-loop corrections to the soft anomalous dimension in multi-leg scattering ', Physical Review Letters, vol. 117, no. 17, 172002 . https://doi.org/10.1103/PhysRevLett.117.172002
Physical Review Letters, Vol. 117, p. 172002 (2016)
ISSN: 0550-3213
Popis: We present the three-loop result for the soft anomalous dimension governing long-distance singularities of multi-leg gauge-theory scattering amplitudes of massless partons. We compute all contributing webs involving semi-infinite Wilson lines at three loops and obtain the complete three-loop correction to the dipole formula. We find that non-dipole corrections appear already for three coloured partons, where the correction is a constant without kinematic dependence. Kinematic dependence appears only through conformally-invariant cross ratios for four coloured partons or more, and the result can be expressed in terms of single-valued harmonic polylogarithms of weight five. While the non-dipole three-loop term does not vanish in two-particle collinear limits, its contribution to the splitting amplitude anomalous dimension reduces to a constant, and it only depends on the colour charges of the collinear pair, thereby preserving strict collinear factorization properties. Finally we verify that our result is consistent with expectations from the Regge limit.
Comment: v2: remaining diagrams computed; colour conservation accounted for; strict collinear factorization shown to hold. Some references added. 6 pages, 2 figures
Databáze: OpenAIRE