Robust Cell Detection for Large-Scale 3D Microscopy Using GPU-Accelerated Iterative Voting

Autor: Laura Montier, Jokubas Ziburkus, David Mayerich, Louise C. Abbott, Leila Saadatifard
Rok vydání: 2018
Předmět:
Zdroj: Frontiers in Neuroanatomy
Frontiers in Neuroanatomy, Vol 12 (2018)
ISSN: 1662-5129
DOI: 10.3389/fnana.2018.00028
Popis: High-throughput imaging techniques, such as Knife-Edge Scanning Microscopy (KESM),are capable of acquiring three-dimensional whole-organ images at sub-micrometer resolution. These images are challenging to segment since they can exceed several terabytes (TB) in size, requiring extremely fast and fully automated algorithms. Staining techniques are limited to contrast agents that can be applied to large samples and imaged in a single pass. This requires maximizing the number of structures labeled in a single channel, resulting in images that are densely packed with spatial features. In this paper, we propose a three-dimensional approach for locating cells based on iterative voting. Due to the computational complexity of this algorithm, a highly efficient GPU implementation is required to make it practical on large data sets. The proposed algorithm has a limited number of input parameters and is highly parallel.
Databáze: OpenAIRE