Comparative cardio and developmental toxicity induced by the popular medicinal extract of Sutherlandia frutescens (L.) R.Br. detected using a zebrafish Tuebingen embryo model
Autor: | Nokwanda P. Makunga, Min-Jie Xu, Longsheng Chen, Samkele Zonyane, Zhunan Gong, Shuwen Xu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
0106 biological sciences
0301 basic medicine Plant metabolomics Terpenoids Cytotoxicity Developmental toxicity 01 natural sciences South Africa 03 medical and health sciences Teratogenicity Medicinal plants In vivo medicine Animals Bioassay In vivo model Yolk sac Zebrafish Plants Medicinal biology Traditional medicine Plant Extracts Chemistry Fabaceae Heart Embryo General Medicine lcsh:Other systems of medicine biology.organism_classification Cycloartane glycosides lcsh:RZ201-999 Terpenoid Cardiotoxicity 030104 developmental biology medicine.anatomical_structure Complementary and alternative medicine Lessertia Larva Sutherlandia frutescens Models Animal Aqueous and ethanol extract Biological Assay Research Article 010606 plant biology & botany |
Zdroj: | BMC Complementary and Alternative Medicine, Vol 18, Iss 1, Pp 1-11 (2018) BMC Complementary and Alternative Medicine |
ISSN: | 1472-6882 |
DOI: | 10.1186/s12906-018-2303-9 |
Popis: | Background Sutherlandia frutescens is one of the most promising commercialized, indigenous and medicinal plants of South Africa that is used as an immune-booster, and a traditional treatment for cancer. However, few studies report on its toxicology and dosage in vivo. There is still room to better understand its cytotoxicity effects in animal systems. Methods We prepared two extracts, one with 80% (v/v) ethanol, and the other, with water. Both were studied to determine the maximum tolerable concentration when extracts were applied at 0 to 200 μg/ml to a Tuebingen zebrafish embryo line. The development of zebrafish embryos after 24 h post fertilization (hpf) was studied. A concentration range of 5 μg/ml to 50 μg/ml was then chosen to monitor the ontological development of cultured embryos. A liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) method was used to study the differences of the two experimental extracts. Chemical variation between the extracts was illustrated using chemometrics. Results Both extracts led to bleeding and pericardial cyst formation when applied at high concentrations to the zebrafish embryo culture. Chronic teratogenic toxicities, leading to pericardial edema, yolk sac swelling, and other abnormal developmental characteristics, were detected. The aqueous extracts of S. frutescens were less toxic to the larvae than the ethanol extracts, validating preference for aqueous preparations when used in traditional medicine. Chemical differences between the water extracts and alcoholic extracts were analysed using LC-MS/MS. A supervised metabolomics approach, targeting the sutherlandiosides and sutherlandins using orthogonal partial least squares-discriminant analysis (OPLS-DA), illustrated that sutherlandiosides were the main chemical features that can be used to distinguish between the two extracts, despite the extracts being highly similar in their chemical constituents. Conclusion The water extract caused less cytotoxic and abnormal developmental effects compared to the ethanolic extract, and, this is likely due to differences in concentrations of extracted chemicals rather than the chemical profile per se. This study provides more evidence of cytotoxicity effects linked to S. frutescens using the zebrafish embryo bioassay as a study tool. Electronic supplementary material The online version of this article (10.1186/s12906-018-2303-9) contains supplementary material, which is available to authorized users. |
Databáze: | OpenAIRE |
Externí odkaz: |
načítá se...