A semiparametric efficient estimator in case-control studies for gene–environment independent models
Autor: | Liang Liang, Raymond J. Carroll, Yanyuan Ma |
---|---|
Rok vydání: | 2019 |
Předmět: |
Statistics and Probability
Numerical Analysis Estimator 020206 networking & telecommunications 02 engineering and technology Logistic regression 01 natural sciences Article Source Population 010104 statistics & probability Efficient estimator 0202 electrical engineering electronic engineering information engineering Genetic predisposition Econometrics 0101 mathematics Statistics Probability and Uncertainty Rare disease assumption Independence (probability theory) Mathematics |
Zdroj: | Journal of Multivariate Analysis. 173:38-50 |
ISSN: | 0047-259X |
DOI: | 10.1016/j.jmva.2019.01.006 |
Popis: | Case-controls studies are popular epidemiological designs for detecting gene–environment interactions in the etiology of complex diseases, where the genetic susceptibility and environmental exposures may often be reasonably assumed independent in the source population. Various papers have presented analytical methods exploiting gene–environment independence to achieve better efficiency, all of which require either a rare disease assumption or a distributional assumption on the genetic variables. We relax both assumptions. We construct a semiparametric estimator in case-control studies exploiting gene–environment independence, while the distributions of genetic susceptibility and environmental exposures are both unspecified and the disease rate is assumed unknown and is not required to be close to zero. The resulting estimator is semiparametric efficient and its superiority over prospective logistic regression, the usual analysis in case-control studies, is demonstrated in various numerical illustrations. |
Databáze: | OpenAIRE |
Externí odkaz: |