Comparison of Machine Learning Methods for Predicting Outcomes After In-Hospital Cardiac Arrest
Autor: | Anoop Mayampurath, Raffi Hagopian, Laura Ruth Venable, Dana P. Edelson, Kyle A Carey, Matthew M. Churpek |
---|---|
Rok vydání: | 2021 |
Předmět: |
Male
Resuscitation Psychological intervention MEDLINE Critical Care and Intensive Care Medicine Machine learning computer.software_genre Logistic regression Article Cohort Studies Machine Learning Text mining Outcome Assessment Health Care Humans Medicine Survivors Derivation Aged Artificial neural network business.industry Middle Aged Prognosis Heart Arrest ROC Curve Area Under Curve Cohort Female Artificial intelligence business computer Forecasting |
Zdroj: | Crit Care Med |
ISSN: | 0090-3493 |
DOI: | 10.1097/ccm.0000000000005286 |
Popis: | OBJECTIVES Prognostication of neurologic status among survivors of in-hospital cardiac arrests remains a challenging task for physicians. Although models such as the Cardiac Arrest Survival Post-Resuscitation In-hospital score are useful for predicting neurologic outcomes, they were developed using traditional statistical techniques. In this study, we derive and compare the performance of several machine learning models with each other and with the Cardiac Arrest Survival Post-Resuscitation In-hospital score for predicting the likelihood of favorable neurologic outcomes among survivors of resuscitation. DESIGN Analysis of the Get With The Guidelines-Resuscitation registry. SETTING Seven-hundred fifty-five hospitals participating in Get With The Guidelines-Resuscitation from January 1, 2001, to January 28, 2017. PATIENTS Adult in-hospital cardiac arrest survivors. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Of 117,674 patients in our cohort, 28,409 (24%) had a favorable neurologic outcome, as defined as survival with a Cerebral Performance Category score of less than or equal to 2 at discharge. Using patient characteristics, pre-existing conditions, prearrest interventions, and periarrest variables, we constructed logistic regression, support vector machines, random forests, gradient boosted machines, and neural network machine learning models to predict favorable neurologic outcome. Events prior to October 20, 2009, were used for model derivation, and all subsequent events were used for validation. The gradient boosted machine predicted favorable neurologic status at discharge significantly better than the Cardiac Arrest Survival Post-Resuscitation In-hospital score (C-statistic: 0.81 vs 0.73; p < 0.001) and outperformed all other machine learning models in terms of discrimination, calibration, and accuracy measures. Variables that were consistently most important for prediction across all models were duration of arrest, initial cardiac arrest rhythm, admission Cerebral Performance Category score, and age. CONCLUSIONS The gradient boosted machine algorithm was the most accurate for predicting favorable neurologic outcomes in in-hospital cardiac arrest survivors. Our results highlight the utility of machine learning for predicting neurologic outcomes in resuscitated patients. |
Databáze: | OpenAIRE |
Externí odkaz: |