Popis: |
By 2050, the world’s population will reach about 10 billion people, which will the need for food by about 60% more than is available today. To meet this need, new processes are emerging to allow more efficient and sustainable intensification of agriculture. In this context, the use of biostimulants has received increasing attention, due to their ability to improve plant quality and yield, stress tolerance, and/or improve the availability of nutrients in the soil. When it comes to Cyanobacteria, the preferred ones are N2-fixing species, which increase organic nitrogen in the soil, and produce hygroscopic exopolysaccharides, which alter the distribution of water by reducing soil hydrophobicity. Therefore, they decrease soil evaporation and retain moisture, improving soil stability. Wild strains of filamentous N2 fixing Nostoc 135, Nostoc 136, Nostoc 137, and Anabaena 4, provided by Alga2O Lda., were grown in the laboratory with the aim of selecting those that presented the necessary physiological characteristics to be efficiently grown in the laboratory. Therefore, the growth rate, productivity, and exopolysaccharides (EPS) contents were analysed. The EPS obtained from each strain culture (3% g/L) was applied to lettuce seeds (Lactuca sativa), to determine the germination rate, primary root length and number of primary leaves produced. As confirmed by other authors, Cyanobacteria are interesting biostimulants regarding germination rates. Other effects to be tested in the future are heat and drought tolerance, water, nutrients, essential oil, and pigment content, all of which are positive aspects that have been previously reported for other Nostoc and Anabaena species. info:eu-repo/semantics/publishedVersion |