Introduction of a Superconducting Gravimeter as Novel Hydrological Sensor for the Alpine Research Catchment Zugspitze

Autor: Karsten Schulz, Christian Voigt, Till Rehm, Karl-Friedrich Wetzel, Nico Stolarczuk, Ludger Timmen, Franziska Koch, Hartmut Pflug, Frank Flechtner, Christoph Förste
Jazyk: angličtina
Rok vydání: 2021
Předmět:
ISSN: 1607-7938
Popis: The Zugspitze Geodynamic Observatory Germany has been set up with a worldwide unique installation of a superconducting gravimeter at the summit of Mount Zugspitze. With regard to hydrology, this karstic high-alpine site is largely dominated by high precipitation amounts and a long seasonal snow cover period with significant importance for water supply to its forelands, while it shows a high sensitivity to climate change. However, regarding the majority of alpine regions worldwide there is only weak knowledge on temporal water storage variations due to only sparsely distributed hydrological and meteorological point sensors and the large variability and complexity of alpine signals. This underlines the importance of well-equipped areas such as Mount Zugspitze serving as natural test laboratories for an improved monitoring, understanding and prediction of alpine hydrological processes. The observatory superconducting gravimeter OSG 052 supplements the existing sensor network as a novel hydrological sensor system for the direct observation of the integral gravity effect of total water storage variations in the alpine research catchment Zugspitze. Besides the experimental setup and the available datasets, the required gravimetric prerequisites are presented such as calibration, tidal analysis and signal separation of the superconducting gravimeter observations from the first 2 years. The snowpack is identified as primary contributor to seasonal water storage variations and thus to the gravity residuals with a signal range of up to 750 nm/s2 corresponding to 1957 mm snow water equivalent measured at a representative station at the end of May 2019. First hydro-gravimetric sensitivity analysis are based on simplified assumptions of the snowpack distribution within the area around Mount Zugspitze. These reveal a snow-gravimetric footprint of up to 4 km distance around the gravimeter with a dominant gravity contribution from the snowpack in the Partnach spring catchment. This study already shows that the hydro-gravimetric approach can deliver important and representative integral insights into this high-alpine site. This work is regarded as a concept study showing preliminary gravimetric results and sensitivity analysis for upcoming long-term hydro-gravimetric research projects.
Databáze: OpenAIRE