Nanomorphology and Charge Generation in Bulk Heterojunctions Based on Low-Bandgap Dithiophene Polymers with Different Bridging Atoms
Autor: | Christoph J. Brabec, Markus C. Scharber, Kurt Hingerl, Russell Gaudiana, J Joachim Loos, Zenghuo Zhu, Gilles Dennler, Mauro Morana, Karen Forberich, David Waller, Hamed Azimi, SS Svetlana van Bavel, Hans-Joachim Egelhaaf, Jens Hauch |
---|---|
Přispěvatelé: | Materials and Interface Chemistry |
Rok vydání: | 2010 |
Předmět: |
chemistry.chemical_classification
Fullerene Nanostructure Materials science Band gap Stacking Nanotechnology Heterojunction Polymer Condensed Matter Physics Electronic Optical and Magnetic Materials Biomaterials chemistry Chemical engineering Phase (matter) Electrochemistry Copolymer SDG 7 - Affordable and Clean Energy SDG 7 – Betaalbare en schone energie |
Zdroj: | Advanced Functional Materials, 20(7), 1180-1188. Wiley-VCH Verlag |
ISSN: | 1616-3028 1616-301X |
DOI: | 10.1002/adfm.200900931 |
Popis: | Carbon bridged (C-PCPDTBT) and silicon-bridged (Si-PCPDTBT) dithiophene donor-acceptor copolymers belong to a promising class of low bandgap materials. Their higher field-effect mobility, as high as 10 -2 cm 2 V -1 s -1 in pristine films, and their more balanced charge transport in blends with fullerenes make silicon-bridged materials better candidates for use in photovoltaic devices. Striking morphological changes are observed in polymer:fullerene bulk heterojunctions upon the substitution of the bridging atom. XRD investigation indicates increased π-π stacking in Si-PCPDTBT compared to the carbon-bridged analogue. The fluorescence of this polymer and that of its counterpart C-PCPDTBT indicates that the higher photogeneration achieved in Si-PCPDTBT:fullerene films (with either [C60]PCBM or [C70]PCBM) can be correlated to the inactivation of a charge-transfer complex and to a favorable length of the donor-acceptor phase separation. TEM studies of Si-PCPDTBT:fullerene blended films suggest the formation of an interpenetrating network whose phase distribution is comparable to the one achieved in C-PCPDTBT-fullerene using 1,8-octanedithiol as an additive. In order to achieve a balanced hole and electron transport, Si-PCPDTBT requires a lower fullerene content (between 50 to 60 wt%) than C-PCPDTBT (more than 70 wt%). The Si-PCPDTBT:[C70]PCBM OBHJ solar cells deliver power conversion efficiencies of over 5%. |
Databáze: | OpenAIRE |
Externí odkaz: |